Points2Pix: 3D Point-Cloud to Image Translation Using Conditional GANs

被引:4
|
作者
Milz, Stefan [1 ]
Simon, Martin [1 ]
Fischer, Kai [1 ]
Poepperl, Maximillian [1 ]
Gross, Horst-Michael [2 ]
机构
[1] Valeo Schalter & Sensoren GmbH, Kronach, Germany
[2] Ilmenau Univ Technol, Ilmenau, Germany
来源
关键词
D O I
10.1007/978-3-030-33676-9_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present the first approach for 3D point-cloud to image translation based on conditional Generative Adversarial Networks (cGAN). The model handles multi-modal information sources from different domains, i.e. raw point-sets and images. The generator is capable of processing three conditions, whereas the point-cloud is encoded as raw point-set and camera projection. An image background patch is used as constraint to bias environmental texturing. A global approximation function within the generator is directly applied on the point-cloud (PointNet). Hence, the representative learning model incorporates global 3D characteristics directly at the latent feature space. Conditions are used to bias the background and the viewpoint of the generated image. This opens up new ways in augmenting or texturing 3D data to aim the generation of fully individual images. We successfully evaluated our method on the KITTI and SunRGBD dataset with an outstanding object detection inception score.
引用
收藏
页码:387 / 400
页数:14
相关论文
共 50 条
  • [41] Edge-Oriented Point-Cloud Transformer for 3D Intracranial Aneurysm Segmentation
    Liu, Yifan
    Liu, Jie
    Yuan, Yixuan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 : 97 - 106
  • [42] Continuous plane detection in point-cloud data based on 3D Hough Transform
    Hulik, Rostislav
    Spanel, Michal
    Smrz, Pavel
    Materna, Zdenek
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (01) : 86 - 97
  • [43] Classification of 3D Point Cloud Using Numerical Surface Signatures on Interest Points
    Rimkus, K.
    Lipnickas, A.
    Sinkevicius, S.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2014, 20 (06) : 8 - 11
  • [44] 6-DoF Pose Localization in 3D Point-Cloud Dense Maps Using a Monocular Camera
    Jaramillo, Carlos
    Dryanovski, Ivan
    Valenti, Roberto G.
    Xiao, Jizhong
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 1747 - 1752
  • [45] 3d indoor point cloud semantic segmentation using image and voxel
    Yeom S.-S.
    Ha J.-E.
    Ha, Jong-Eun (jeha@seoultech.ac.kr), 1600, Institute of Control, Robotics and Systems (27): : 1000 - 1007
  • [46] Point2Wave: 3-D Point Cloud to Waveform Translation Using a Conditional Generative Adversarial Network With Dual Discriminators
    Shinohara, Takayuki
    Xiu, Haoyi
    Matsuoka, Masashi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 11630 - 11642
  • [47] Classify 3D Voxel based Point-cloud using Convolutional Neural Network on a Neural Compute Stick
    Xu, Xiaofan
    Amaro, Joao
    Caulfield, Sam
    Falcao, Gabriel
    Moloney, David
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017, : 37 - 43
  • [48] Enhancement of 3D Point Cloud Contents Using 2D Image Super Resolution Network
    Park, Seonghwan
    Kim, Junsik
    Hwang, Yonghae
    Suh, Doug Young
    Kim, Kyuheon
    JOURNAL OF WEB ENGINEERING, 2022, 21 (02): : 425 - 442
  • [49] 3D meta-classification: A meta-learning approach for selecting 3D point-cloud classification algorithm
    Xu, Fan
    Chen, Jun
    Shi, Yizhou
    Ruan, Tianchen
    Wu, Qihui
    Zhang, Xiaofei
    Information Sciences, 2024, 662
  • [50] Pix2Point: Learning Outdoor 3D Using Sparse Point Clouds and Optimal Transport
    Leroy, R.
    Trouve-Peloux, P.
    Champagnat, F.
    Le Saux, B.
    Carvalho, M.
    PROCEEDINGS OF 17TH INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS (MVA 2021), 2021,