Nonlinear mutlilayer combining techniques for Bayesian equalizers using the radial basis function network as a digital magnetic storage equalizer

被引:0
|
作者
Choi, S [1 ]
Hong, D [1 ]
机构
[1] Yonsei Univ, Seodaemun Gu, Seoul 120749, South Korea
关键词
Bayesian equalizer; nonlinear multilayer combiner; nonlinear distortion; radial basis function; partial erasure;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to reduce the complexity and enhance the performance of the Bayesian equalizer using the radial basis function (RBF) network, a new equalizer using the RBF network with a nonlinear multilayer combiner (RNEQ) is proposed. The RNEQ is applied to a digital storage system in which the primary element of impairment is nonlinear distortion due to partial erasure. From computer simulation results, the RNEQ with almost 70% reduced structural complexity over the conventional equalizer using RBF network has nearly the same performance in terms of bit-error rate (BER) and mean squared error.
引用
收藏
页码:2319 / 2321
页数:3
相关论文
共 42 条
  • [21] Robust speech recognition techniques using a radial basis function neural network for mobile applications
    Sankar, R
    Sethi, NS
    IEEE SOUTHEASTCON '97 - ENGINEERING THE NEW CENTURY, PROCEEDINGS, 1996, : 87 - 91
  • [22] NONLINEAR AND DISCONTINUITIES MODELING OF TIME SERIES USING ARTIFICIAL NEURAL NETWORK WITH RADIAL BASIS FUNCTION
    Tierra, Alfonso
    GEOGRAPHIA TECHNICA, 2016, 11 (02): : 102 - 112
  • [23] Prediction of magnetic field emissions by current source reconstruction using radial basis function network
    Diao, Yinliang
    Sun, Weinong
    Leung, Sai Wing
    Chan, Kwok Hung
    Siu, Yun Ming
    ELECTRONICS LETTERS, 2015, 51 (16) : 1243 - 1244
  • [24] Diabetes Classification using Radial Basis Function Network by Combining Cluster Validity Index and BAT Optimization with Novel Fitness Function
    Cheruku, Ramalingaswamy
    Edla, Damodar Reddy
    Kuppili, Venkatanareshbabu
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2017, 10 (01) : 247 - 265
  • [25] Diabetes Classification using Radial Basis Function Network by Combining Cluster Validity Index and BAT Optimization with Novel Fitness Function
    Ramalingaswamy Cheruku
    Damodar Reddy Edla
    Venkatanareshbabu Kuppili
    International Journal of Computational Intelligence Systems, 2017, 10 : 247 - 265
  • [26] Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network
    Tsujii, O
    Freedman, MT
    Mun, SK
    PATTERN RECOGNITION, 1999, 32 (05) : 891 - 903
  • [27] Nonlinear system modeling using a self-organizing recurrent radial basis function neural network
    Han, Hong-Gui
    Guo, Ya-Nan
    Qiao, Jun-Fei
    APPLIED SOFT COMPUTING, 2018, 71 : 1105 - 1116
  • [28] Robust adaptive nonlinear PID controller using radial basis function neural network for ballbots with external force
    Nguyen, Van-Truong
    Nguyen, Quoc-Cuong
    Van, Mien
    Su, Shun-Feng
    Garg, Harish
    Duong, Dai-Nhan
    Tan, Phan Xuan
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2025, 61
  • [29] Real-Time Identification of Nonlinear Time-Varying Systems Using Radial Basis Function Network
    O. G. Rudenko
    A. A. Bessonov
    Cybernetics and Systems Analysis, 2003, 39 (6) : 927 - 934
  • [30] Modelling the nonlinear dynamic behaviour of a boiler-turbine system using a radial basis function neural network
    Kouadri, A.
    Namoun, A.
    Zelmat, M.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (13) : 1873 - 1886