Capture Performance of A Multi-Freedom Wave Energy Converter with Different Power Take-off Systems

被引:13
|
作者
Huang Shu-ting [1 ]
Shi Hong-da [1 ,2 ]
Dong Xiao-chen [1 ]
机构
[1] Ocean Univ China, Coll Engn, Qingdao 266100, Shandong, Peoples R China
[2] Shandong Prov Key Lab Ocean Engn, Qingdao 266100, Shandong, Peoples R China
关键词
oscillating buoy wave energy converter; nonlinear power take-off; multi-freedom; power capture; POINT ABSORBER;
D O I
10.1007/s13344-019-0028-2
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Among the wave energy converters (WECs), oscillating buoy is a promising type for wave energy development in offshore area. Conventional single-freedom oscillating buoy WECs with linear power take-off (PTO) system are less efficient under off-resonance conditions and have a narrow power capture bandwidth. Thus, a multi-freedom WEC with a nonlinear PTO system is proposed. This study examines a multi-freedom WEC with 3 degrees of freedom: surge, heave and pitch. Three different PTO systems (velocity-square, snap through, and constant PTO systems) and a traditional linear PTO system are applied to the WEC. A time-domain model is established using linear potential theory and Cummins equation. The kinematic equation is numerically calculated with the fourth-order Runge-Kutta method. The optimal average output power of the PTO systems in all degrees of freedom are obtained and compared. Other parameters of snap through PTO are also discussed in detail. Results show that according to the power capture performance, the order of the PTO systems from the best to worst is snap through PTO, constant PTO, linear PTO and velocity-square PTO. The resonant frequency of the WEC can be adjusted to the incident wave frequency by choosing specific parameters of the snap through PTO. Adding more DOFs can make the WEC get a better power performance in more wave frequencies. Both the above two methods can raise the WEC's power capture performance significantly.
引用
收藏
页码:288 / 296
页数:9
相关论文
共 50 条
  • [41] Strategies for active tuning of Wave Energy Converter hydraulic power take-off mechanisms
    Cargo, C. J.
    Hillis, A. J.
    Plummer, A. R.
    RENEWABLE ENERGY, 2016, 94 : 32 - 47
  • [42] Research on Thermodynamic Characteristics of Hydraulic Power Take-Off System in Wave Energy Converter
    Niu, Yubo
    Gu, Xingyuan
    Yue, Xuhui
    Zheng, Yang
    He, Peijie
    Chen, Qijuan
    ENERGIES, 2022, 15 (04)
  • [43] Mechanical model optimization of duck wave energy converter power take-off system
    Ye, Yin
    You, Yage
    Wang, Wensheng
    Sheng, Songwei
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2020, 41 (10): : 15 - 19
  • [44] Research of Power Take-off System for "Sharp Eagle II" Wave Energy Converter
    Ye Yin
    Wang Kun-lin
    You Ya-ge
    Sheng Song-wei
    CHINA OCEAN ENGINEERING, 2019, 33 (05) : 618 - 627
  • [45] Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter
    Hansen, Rico H.
    Kramer, Morten M.
    Vidal, Enrique
    ENERGIES, 2013, 6 (08) : 4001 - 4044
  • [46] Optimal Electric Power Take-off Strategy for Surface Riding Wave Energy Converter
    Sheshaprasad, Shrikesh
    Naghavi, Farid
    Hasanpour, Shima
    Albader, Mesaad
    Gardner, Matthew C.
    Kang, HeonYong
    Toliyat, Hamid A.
    2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2022,
  • [47] Power take-off mechanism analysis of oscillating-buoy wave energy converter
    Zhang W.
    Zhou Y.
    Zhou X.
    1600, Chinese Vibration Engineering Society (39): : 38 - 44
  • [48] Theoretical study on the power take-off estimation of heaving buoy wave energy converter
    Shi, Hongda
    Cao, Feifei
    Liu, Zhen
    Qu, Na
    RENEWABLE ENERGY, 2016, 86 : 441 - 448
  • [49] Effect of non-ideal power take-off on the energy absorption of a reactively controlled one degree of freedom wave energy converter
    Genest, Romain
    Bonnefoy, Felicien
    Clement, Alain H.
    Babarit, Aurelien
    APPLIED OCEAN RESEARCH, 2014, 48 : 236 - 243
  • [50] Performance investigation of a two-raft-type wave energy converter with hydraulic power take-off unit
    Liu, ChangHai
    Yang, QingJun
    Bao, Gang
    APPLIED OCEAN RESEARCH, 2017, 62 : 139 - 155