Probing the surface chemistry for reverse water gas shift reaction on Pt (111) using ambient pressure X-ray photoelectron spectroscopy

被引:16
|
作者
Su, Hongyang [1 ,2 ]
Ye, Yifan [1 ,3 ,4 ]
Lee, Kyung-Jae [1 ,5 ]
Zeng, Jie [2 ]
Mun, Bongjin S. [5 ]
Crumlin, Ethan J. [1 ,4 ]
机构
[1] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Chem Phys,Key Lab Surface & Interface Chem &, Key Lab Strongly Coupled Quantum Matter Phys,Chin, Hefei 230026, Anhui, Peoples R China
[3] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[5] Gwangju Inst Sci & Technol GIST, Dept Phys & Photon Sci, Gwangju 500712, South Korea
关键词
Ambient pressure X-ray photoelectron spectroscopy (APXPS); Surface catalysis; Reverse water gas shift (RWGS) reaction; CO2; hydrogenation; CO2; HYDROGENATION; PT(111) SURFACE; CARBON-DIOXIDE; DISSOCIATION; REDUCTION; ADSORPTION; CONVERSION; CATALYST; METHANATION; OXIDATION;
D O I
10.1016/j.jcat.2020.08.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using ambient pressure XPS (APXPS), we explored carbon dioxide (CO2) adsorption and CO2 hydrogenation on Pt(111) single crystal surface to observe the activation of CO2 and the subsequent reaction mechanism. In pure CO2, we observed CO adsorbates and adsorbed oxygen on Pt(111) derived from CO2 dissociation at room temperature. The introduction of H-2 (at a pressure ratio of 1:1 (H-2:CO2)) increased the production of CO across all temperatures by facilitating the removal of surface oxygen. As a consequence, the surface could expose sites that could then be utilized for producing CO. Under these conditions, the reverse water-gas shift (RWGS) reaction was observed starting at 300 degrees C. At higher H-2 partial pressure (10:1 (H-2:CO2)), the RWGS reaction initiated at a lower temperature of 200 degrees C and continued to enhance the conversion of CO2 with increasing temperatures. Our results revealed that CO2 was activated on a clean Pt(111) surface through the dissociation mechanism to form adsorbed CO and O at room temperature and at elevated temperatures. Introducing H-2 facilitated the RWGS as adsorbed oxygen was consumed continuously to form H2O, and adsorbed CO desorbed from the surface at elevated temperatures. This work clearly provides direct experimental evidence for the surface chemistry of CO2 dissociation and demonstrates how hydrogen impacts the RWGS reaction on a platinum surface. (C) 2020 The Authors. Published by Elsevier Inc.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 50 条
  • [41] X-ray photoelectron spectroscopy under real ambient pressure conditions
    Takagi, Yasumasa
    Nakamura, Takahiro
    Yu, Liwei
    Chaveanghong, Suwilai
    Sekizawa, Oki
    Sakata, Tomohiro
    Uruga, Tomoya
    Tada, Mizuki
    Iwasawa, Yasuhiro
    Yokoyama, Toshihiko
    APPLIED PHYSICS EXPRESS, 2017, 10 (07)
  • [42] Application of ambient pressure x-ray photoelectron spectroscopy to studies of catalysis: Surface of catalysis in reactants
    Tao, Franklin
    Luan Nguyen
    Tang, Yu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [43] Ambient Pressure X-ray Photoelectron Spectroscopy Study of Oxidation Phase Transitions on Cu(111) and Cu(110)
    Shi, Shucheng
    Han, Yong
    Yang, Tian
    Zang, Yijing
    Zhang, Hui
    Li, Yimin
    Liu, Zhi
    CHEMPHYSCHEM, 2023, 24 (22)
  • [44] Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Acetic Acid Thermal Decomposition on Pd(111)
    Nguyen, Hoan K. K.
    Addou, Rafik
    Chukwu, Kingsley C.
    Herman, Gregory S.
    Arnadottir, Liney
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (24): : 11472 - 11480
  • [45] Understanding the Oxygen Evolution Reaction Mechanism on CoOx using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy
    Favaro, Marco
    Yang, Jinhui
    Nappini, Silvia
    Magnano, Elena
    Toma, Francesca M.
    Crumlin, Ethan J.
    Yano, Junko
    Sharp, Ian D.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (26) : 8960 - 8970
  • [46] Surface analysis using X-ray photoelectron spectroscopy
    Mahoney, Janet
    Monroe, Caroline
    Swartley, Anya M.
    Ucak-Astarlioglu, Mine G.
    Zoto, Christopher A.
    SPECTROSCOPY LETTERS, 2020, 53 (10) : 726 - 736
  • [47] Probing dynamic covalent chemistry in a 2D boroxine framework by in situ near-ambient pressure X-ray photoelectron spectroscopy
    Leidinger, Paul
    Panighel, Mirco
    Perez Dieste, Virginia
    Villar-Garcia, Ignacio J.
    Vezzoni, Pablo
    Haag, Felix
    Barth, Johannes V.
    Allegretti, Francesco
    Guenther, Sebastian
    Patera, Laerte L.
    NANOSCALE, 2023, 15 (03) : 1068 - 1075
  • [48] Understanding solid/liquid electrified interfaces using ambient pressure x-ray photoelectron spectroscopy
    Favaro, Marco
    Liu, Zhi
    Crumlin, Ethan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [49] Using “Tender” X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface
    Stephanus Axnanda
    Ethan J. Crumlin
    Baohua Mao
    Sana Rani
    Rui Chang
    Patrik G. Karlsson
    Mårten O. M. Edwards
    Måns Lundqvist
    Robert Moberg
    Phil Ross
    Zahid Hussain
    Zhi Liu
    Scientific Reports, 5
  • [50] Using "Tender" X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface
    Axnanda, Stephanus
    Crumlin, Ethan J.
    Mao, Baohua
    Rani, Sana
    Chang, Rui
    Karlsson, Patrik G.
    Edwards, Marten O. M.
    Lundqvist, Mans
    Moberg, Robert
    Ross, Phil
    Hussain, Zahid
    Liu, Zhi
    SCIENTIFIC REPORTS, 2015, 5