Resurgence and renormalons in the one-dimensional Hubbard model

被引:4
|
作者
Marino, Marcos [1 ]
Reis, Tomas
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
来源
SCIPOST PHYSICS | 2022年 / 13卷 / 05期
基金
欧洲研究理事会;
关键词
GROUND-STATE ENERGY; FIELD-THEORY; SCALING LIMIT; MAGNETIZATION CURVE; PERTURBATION-THEORY; FERMIONS; SYSTEMS; WEAK; GAP;
D O I
10.21468/SciPostPhys.13.5.113
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use resurgent analysis to study non-perturbative aspects of the one-dimensional, multicomponent Hubbard model with an attractive interaction and arbitrary filling. In the two-component case, we show that the leading Borel singularity of the perturbative series for the ground-state energy is determined by the energy gap, as expected for superconducting systems. This singularity turns out to be of the renormalon type, and we identify a class of diagrams leading to the correct factorial growth. As a consequence of our analysis, we propose an explicit expression for the energy gap at weak coupling in the multi-component Hubbard model, at next-to-leading order in the coupling constant. In the two-component, half-filled case, we use the Bethe ansatz solution to determine the full trans-series for the ground state energy, and the exact form of its Stokes discontinuity.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Bosonization and correlators of the one-dimensional Hubbard model
    Ovchinnikov, A. A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (10):
  • [22] Quantum deformations of the one-dimensional Hubbard model
    Beisert, Niklas
    Koroteev, Peter
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (25)
  • [23] Charge diffusion in the one-dimensional Hubbard model
    Steinigeweg, R.
    Jin, F.
    De Raedt, H.
    Michielsen, K.
    Gemmer, J.
    PHYSICAL REVIEW E, 2017, 96 (02)
  • [24] Thermodynamics and excitations of the one-dimensional Hubbard model
    Deguchi, T
    Essler, FHL
    Göhmann, F
    Klümper, A
    Korepin, VE
    Kusakabe, K
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 331 (05): : 197 - 281
  • [25] Antiferromagnetic fluctuations in the one-dimensional Hubbard model
    Janis, Vaclav
    Klic, Antonin
    Yan, Jiawei
    AIP ADVANCES, 2020, 10 (12)
  • [26] ONE-DIMENSIONAL HUBBARD MODEL AT FINITE TEMPERATURE
    TAKAHASHI, M
    PROGRESS OF THEORETICAL PHYSICS, 1972, 47 (01): : 69 - +
  • [27] Ladder operator for the one-dimensional Hubbard model
    Links, J
    Zhou, HQ
    McKenzie, RH
    Gould, MD
    PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5096 - 5099
  • [28] Thermoelectric power in one-dimensional Hubbard model
    Zemljic, MM
    Prelovsek, P
    PHYSICAL REVIEW B, 2005, 71 (08):
  • [29] THERMODYNAMIC PROPERTIES OF ONE-DIMENSIONAL HUBBARD MODEL
    BRANDT, U
    ZEITSCHRIFT FUR PHYSIK, 1974, 269 (03): : 221 - 228
  • [30] Threshold singularities in the one-dimensional Hubbard model
    Essler, Fabian H. L.
    PHYSICAL REVIEW B, 2010, 81 (20):