Porous convection with local thermal non-equilibrium temperatures and with Cattaneo effects in the solid

被引:51
|
作者
Straughan, B. [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
关键词
local thermal non-equilibrium; Hopf bifurcation; porous convection; MODEL; HEAT; EQUILIBRIUM; MEDIA; TRANSPORT; FLUID; ONSET; FLOW;
D O I
10.1098/rspa.2013.0187
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is increasing interest in convection in local thermal non-equilibrium (LTNE) porous media. This is where the solid skeleton and the fluid may have different temperatures. There is also increasing interest in thermal wave motion, especially at the microscale and nanoscale, and particularly in solids. Much of this work has been based on the famous model proposed by Carlo Cattaneo in 1948. In this paper, we develop a model for thermal convection in a fluid-saturated Darcy porous medium allowing the solid and fluid parts to be at different temperatures. However, we base our thermodynamics for the fluid on Fourier's law of heat conduction, whereas we allow the solid skeleton to transfer heat by means of the Cattaneo heat flux theory. This leads to a novel system of partial differential equations involving Darcy's law, a parabolic fluid temperature equation and effectively a hyperbolic solid skeleton temperature equation. This system leads to novel physics, and oscillatory convection is found, whereas for the standard LTNE Darcy model, this does not exist. We are also able to derive a rigorous nonlinear global stability theory, unlike work in thermal convection in other second sound systems in porous media.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Thermal boundary conditions of local thermal non-equilibrium model for convection heat transfer in porous media
    Ouyang, Xiao-Long
    Jiang, Pei-Xue
    Xu, Rui-Na
    [J]. International Journal of Heat and Mass Transfer, 2013, 60 (01): : 31 - 40
  • [22] Thermal convection for a Darcy-Brinkman rotating anisotropic porous layer in local thermal non-equilibrium
    Florinda Capone
    Jacopo A. Gianfrani
    [J]. Ricerche di Matematica, 2022, 71 : 227 - 243
  • [23] Thermal convection for a Darcy-Brinkman rotating anisotropic porous layer in local thermal non-equilibrium
    Capone, Florinda
    Gianfrani, Jacopo A.
    [J]. RICERCHE DI MATEMATICA, 2022, 71 (01) : 227 - 243
  • [24] Thermal boundary conditions of local thermal non-equilibrium model for convection heat transfer in porous media
    Ouyang, Xiao-Long
    Jiang, Pei-Xue
    Xu, Rui-Na
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 60 : 31 - 40
  • [25] FORCED CONVECTION IN A SELF-HEATING POROUS CHANNEL Local Thermal Non-Equilibrium Model
    Abdedou, Azzedine
    Bouhadef, Khedidja
    Bennacer, Rachid
    [J]. THERMAL SCIENCE, 2017, 21 (06): : 2419 - 2429
  • [26] Effect of Local Thermal Non-equilibrium on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid
    A. V. Kuznetsov
    D. A. Nield
    [J]. Transport in Porous Media, 2010, 83 : 425 - 436
  • [27] The Effects of Double Diffusion and Local Thermal Non-equilibrium on the Onset of Convection in a Layered Porous Medium: Non-oscillatory Instability
    Nield, D. A.
    Kuznetsov, A. V.
    Barletta, A.
    Celli, M.
    [J]. TRANSPORT IN POROUS MEDIA, 2015, 107 (01) : 261 - 279
  • [28] Effect of Local Thermal Non-equilibrium on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid
    Kuznetsov, A. V.
    Nield, D. A.
    [J]. TRANSPORT IN POROUS MEDIA, 2010, 83 (02) : 425 - 436
  • [29] Boundary and thermal non-equilibrium effects on the onset of Darcy–Brinkman convection in a porous layer
    I. S. Shivakumara
    A. L. Mamatha
    M. Ravisha
    [J]. Journal of Engineering Mathematics, 2010, 67 : 317 - 328
  • [30] The Effects of Double Diffusion and Local Thermal Non-equilibrium on the Onset of Convection in a Layered Porous Medium: Non-oscillatory Instability
    D. A. Nield
    A. V. Kuznetsov
    A. Barletta
    M. Celli
    [J]. Transport in Porous Media, 2015, 107 : 261 - 279