Complexity of the laminar-turbulent boundary in pipe flow

被引:15
|
作者
Budanur, Nazmi Burak [1 ,2 ]
Hof, Bjoern [1 ]
机构
[1] IST Austria, Nonlinear Dynam & Turbulence Grp, A-3400 Klosterneuburg, Austria
[2] UC Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW FLUIDS | 2018年 / 3卷 / 05期
基金
美国国家科学基金会;
关键词
TRAVELING-WAVES; STATE-SPACE; SYSTEMS;
D O I
10.1103/PhysRevFluids.3.054401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Over the past decade, the edge of chaos has proven to be a fruitful starting point for investigations of shear flows when the laminar base flow is linearly stable. Numerous computational studies of shear flows demonstrated the existence of states that separate laminar and turbulent regions of the state space. In addition, some studies determined invariant solutions that reside on this edge. In this paper, we study the unstable manifold of one such solution with the aid of continuous symmetry reduction, which we formulate here for the simultaneous quotiening of axial and azimuthal symmetries. Upon our investigation of the unstable manifold, we discover a previously unknown traveling-wave solution on the laminar-turbulent boundary with a relatively complex structure. By means of low-dimensional projections, we visualize different dynamical paths that connect these solutions to the turbulence. Our numerical experiments demonstrate that the laminar-turbulent boundary exhibits qualitatively different regions whose properties are influenced by the nearby invariant solutions.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] On computing the location of laminar-turbulent transition in compressible boundary layers
    Boiko, Andrey V.
    Demyanko, Kirill V.
    Nechepurenko, Yuri M.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2017, 32 (01) : 1 - 12
  • [42] Simulation of the Laminar-Turbulent Transition in the Boundary Layer of the Swept Wing in the Subsonic Flow at Angles of Attack
    Kirilovskiy, S., V
    Boiko, A., V
    Demyanko, K., V
    Nechepurenko, Y. M.
    Poplavskaya, T., V
    [J]. HIGH-ENERGY PROCESSES IN CONDENSED MATTER (HEPCM 2020), 2020, 2288
  • [43] Control of the laminar-turbulent transition by suction of the boundary layer in 2D flow.
    Seraudie, A
    Correge, M
    Casalis, G
    Mouyon, P
    [J]. IUTAM SYMPOSIUM ON MECHANICS OF PASSIVE AND ACTIVE FLOW CONTROL, 1999, 53 : 177 - 182
  • [44] LAMINAR-TURBULENT TRANSITION IN PULSATILE FLOW WITH APPLICATION TO BLOOD-FLOW
    DANTAN, P
    DEJOUVENEL, F
    ODDOU, C
    [J]. JOURNAL DE PHYSIQUE LETTRES, 1976, 37 (7-8): : L157 - L160
  • [45] On problems of the laminar-turbulent transition
    Lukashev, E. A.
    Yakovlev, N. N.
    Radkevich, E. V.
    Vasil'yeva, O. A.
    [J]. DOKLADY MATHEMATICS, 2016, 94 (03) : 649 - 653
  • [46] CALCULATION OF MINIMUM CRITICAL REYNOLDS NUMBER FOR LAMINAR-TURBULENT TRANSITION IN PIPE FLOWS
    Kanda, Hidesada
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 30 : 168 - 186
  • [47] Numerical Investigation of Laminar-Turbulent Flow in a Suddenly Expanding Channel
    Ugli, Madaliev Murodil Erkinjon
    Mamatkulovich, Malikov Zafar
    Alikulovich, Fayziev Rabim
    Muhiddinovich, Hamdamov Muzaffar
    [J]. INTERNET OF THINGS, SMART SPACES, AND NEXT GENERATION NETWORKS AND SYSTEMS, PT II, NEW2AN 2023, RUSMART 2023, 2024, 14543 : 76 - 85
  • [48] Laminar-turbulent transition of a non-Newtonian fluid flow
    Krishnan Thota Radhakrishnan, Adithya
    Poelma, Christian
    Van Lier, Jules
    Clemens, Francois
    [J]. JOURNAL OF HYDRAULIC RESEARCH, 2021, 59 (02) : 235 - 249
  • [49] Numerical analysis of laminar-turbulent transition in a circular pipe with periodic inflow perturbations
    Nikitin N.V.
    [J]. Fluid Dynamics, 2001, 36 (2) : 204 - 216
  • [50] Specificity of laminar-turbulent transition in upward monodispersed microbubbly flow
    Timkin, L. S.
    Gorelik, R. S.
    [J]. TECHNICAL PHYSICS LETTERS, 2010, 36 (06) : 493 - 495