ON CONVEXITY OF PREIMAGES OF MONOTONE OPERATORS

被引:11
|
作者
Kassay, Gabor [1 ]
Pintea, Comel [1 ]
Szenkovits, Ferenc [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2009年 / 13卷 / 2B期
关键词
Minty-Browder monotone operators; c-monotone operators; MAPPINGS; SPACES;
D O I
10.11650/twjm/1500405394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we first study the relationship between local and global Minty-Browder monotone operators and then we show that these operators have generally convex preimages. Our results allow to show that positive semidefinitedness on the complement of a discrete set of the differential operator implies the Minty-Browder monotonicity of the operator itself. We also show that complex functions of one complex variable are Minty-Browder monotone under suitable conditions. Finally, we obtain some injectivity/univalency theorems that generalize some well-known results.
引用
收藏
页码:675 / 686
页数:12
相关论文
共 50 条
  • [31] Operations with monotone operators and the monotonicity of the resulting operators
    Daniela Marian
    Ioan Radu Peter
    Cornel Pintea
    Monatshefte für Mathematik, 2016, 181 : 143 - 168
  • [32] Monotone versus non-monotone projective operators
    Aguilera, J. P.
    Welch, P. D.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025, 57 (01) : 256 - 264
  • [33] Distributions for Nonsymmetric Monotone and Weakly Monotone Position Operators
    Vitonofrio Crismale
    Maria Elena Griseta
    Janusz Wysoczański
    Complex Analysis and Operator Theory, 2021, 15
  • [34] Distributions for Nonsymmetric Monotone and Weakly Monotone Position Operators
    Crismale, Vitonofrio
    Griseta, Maria Elena
    Wysoczanski, Janusz
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (06)
  • [35] On a generalization of the method of monotone operators
    Chernov, A. V.
    DIFFERENTIAL EQUATIONS, 2013, 49 (04) : 517 - 527
  • [36] Multiscale homogenization of monotone operators
    Lukkassen, Dag
    Meidell, Annette
    Wall, Peter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 22 (03) : 711 - 727
  • [37] On integral operators with monotone kernels
    Persson, LE
    Stepanov, VD
    Ushakova, EP
    DOKLADY MATHEMATICS, 2005, 72 (01) : 491 - 494
  • [38] Capacity theory for monotone operators
    DalMaso, G
    Skrypnik, IV
    POTENTIAL ANALYSIS, 1997, 7 (04) : 765 - 803
  • [39] MONOTONE SEMIGROUPS OF OPERATORS ON CONES
    BOYD, DW
    CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (03): : 299 - &
  • [40] Monotone operators on Godel logic
    Fasching, Oliver
    Baaz, Matthias
    ARCHIVE FOR MATHEMATICAL LOGIC, 2014, 53 (3-4): : 261 - 284