Partial recursive functions in Higher-Order Logic

被引:0
|
作者
Krauss, Alexander [1 ]
机构
[1] Tech Univ Munich, Inst Informat, D-8000 Munich, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Based on inductive definitions, we develop an automated tool for defining partial recursive functions in Higher-Order Logic and providing appropriate reasoning tools for them. Our method expresses termination in a uniform manner and includes a very general form of pattern matching, where patterns can be arbitrary expressions. Termination proofs can be deferred, restricted to subsets of arguments and are interchangeable with other proofs about the function. We show that this approach can also facilitate termination arguments for total functions, in particular for nested recursions. We implemented our tool as a definitional specification mechanism for Isabelle/HOL.
引用
收藏
页码:589 / 603
页数:15
相关论文
共 50 条
  • [41] A NOTE ON THE LOGIC OF (HIGHER-ORDER) VAGUENESS
    HECK, RG
    [J]. ANALYSIS, 1993, 53 (04) : 201 - 208
  • [42] Topological completeness for higher-order logic
    Awodey, S
    Butz, C
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2000, 65 (03) : 1168 - 1182
  • [43] Superposition for Full Higher-order Logic
    Bentkamp, Alexander
    Blanchette, Jasmin
    Tourret, Sophie
    Vukmirovic, Petar
    [J]. AUTOMATED DEDUCTION, CADE 28, 2021, 12699 : 396 - 412
  • [44] HIGHER-ORDER ILLATIVE COMBINATORY LOGIC
    Czajka, Lukasz
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2013, 78 (03) : 837 - 872
  • [45] Higher-order modal logic - A sketch
    Fitting, H
    [J]. AUTOMATED DEDUCTION IN CLASSICAL AND NON-CLASSICAL LOGICS, 2000, 1761 : 23 - 38
  • [46] ON NONSTANDARD MODELS IN HIGHER-ORDER LOGIC
    HORT, C
    OSSWALD, H
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (01) : 204 - 219
  • [47] Extensional Higher-Order Logic Programming
    Charalambidis, Angelos
    Handjopoulos, Konstantinos
    Rondogiannis, Panagiotis
    Wadge, William W.
    [J]. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2013, 14 (03)
  • [48] Learning higher-order logic programs
    Cropper, Andrew
    Morel, Rolf
    Muggleton, Stephen
    [J]. MACHINE LEARNING, 2020, 109 (07) : 1289 - 1322
  • [49] Modal Pluralism and Higher-Order Logic
    Clarke-Doane, Justin
    McCarthy, William
    [J]. PHILOSOPHICAL PERSPECTIVES, 2022, 36 (01) : 31 - 58
  • [50] SOME REMARKS ON HIGHER-ORDER LOGIC
    KOGALOVSKII, SR
    [J]. DOKLADY AKADEMII NAUK SSSR, 1968, 178 (05): : 1007 - +