A Hierarchical, Data-Driven Approach to Modeling Single-Cell Populations Predicts Latent Causes of Cell-To-Cell Variability

被引:22
|
作者
Loos, Carolin [1 ,2 ]
Moeller, Katharina [3 ]
Froehlich, Fabian [1 ,2 ]
Hucho, Tim [3 ]
Hasenauer, Jan [1 ,2 ]
机构
[1] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Computat Biol, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Ctr Math, Chair Math Modeling Biol Syst, D-85748 Garching, Germany
[3] Univ Hosp Cologne, Div Expt Anesthesiol & Pain Res, Dept Anesthesiol & Intens Care Med, D-50937 Cologne, Germany
关键词
BAYES FACTORS; DIFFERENTIAL EXPRESSION; PARAMETER-ESTIMATION; GENE-EXPRESSION; CYTOMETRY DATA; HETEROGENEITY; DYNAMICS; SUBPOPULATIONS; SELECTION; BIOLOGY;
D O I
10.1016/j.cels.2018.04.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
All biological systems exhibit cell-to-cell variability. Frameworks exist for understanding how stochastic fluctuations and transient differences in cell state contribute to experimentally observable variations in cellular responses. However, current methods do not allow identification of the sources of variability between and within stable subpopulations of cells. We present a data-driven modeling framework for the analysis of populations comprising heterogeneous subpopulations. Our approach combines mixture modeling with frameworks for distribution approximation, facilitating the integration of multiple single-cell datasets and the detection of causal differences between and within subpopulations. The computational efficiency of our framework allows hundreds of competing hypotheses to be compared. We initially validate our method using simulated data with an understood ground truth, then we analyze data collected using quantitative single-cell microscopy of cultured sensory neurons involved in pain initiation. This approach allows us to quantify the relative contribution of neuronal subpopulations, culture conditions, and expression levels of signaling proteins to the observed cell-to-cell variability in NGF/TrkA-initiated Erk1/2 signaling.
引用
收藏
页码:593 / +
页数:24
相关论文
共 50 条
  • [1] Non-Markovian data-driven modeling of single-cell motility
    Mitterwallner, Bernhard G.
    Schreiber, Christoph
    Daldrop, Jan O.
    Raedler, Joachim O.
    Netz, Roland R.
    [J]. PHYSICAL REVIEW E, 2020, 101 (03)
  • [2] Data-driven analysis of a mechanistic model of CAR T cell signaling predicts effects of cell-to-cell heterogeneity
    Cess, Colin G.
    Finley, Stacey D.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2020, 489
  • [3] Single-cell image analysis to explore cell-to-cell heterogeneity in isogenic populations
    Usaj, Mojca Mattiazzi
    Yeung, Clarence Hue Lok
    Friesen, Helena
    Boone, Charles
    Andrews, Brenda J.
    [J]. CELL SYSTEMS, 2021, 12 (06) : 608 - 621
  • [5] Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    Takashi Nagano
    Yaniv Lubling
    Tim J. Stevens
    Stefan Schoenfelder
    Eitan Yaffe
    Wendy Dean
    Ernest D. Laue
    Amos Tanay
    Peter Fraser
    [J]. Nature, 2013, 502 : 59 - 64
  • [6] Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    Nagano, Takashi
    Lubling, Yaniv
    Stevens, Tim J.
    Schoenfelder, Stefan
    Yaffe, Eitan
    Dean, Wendy
    Laue, Ernest D.
    Tanay, Amos
    Fraser, Peter
    [J]. NATURE, 2013, 502 (7469) : 59 - +
  • [7] Benchmarking data-driven filtering for denoising of TCRpMHC single-cell data
    Montemurro, Alessandro
    Povlsen, Helle Rus
    Jessen, Leon Eyrich
    Nielsen, Morten
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [8] Benchmarking data-driven filtering for denoising of TCRpMHC single-cell data
    Alessandro Montemurro
    Helle Rus Povlsen
    Leon Eyrich Jessen
    Morten Nielsen
    [J]. Scientific Reports, 13 (1)
  • [9] Systematic genetics and single-cell imaging reveal widespread morphological pleiotropy and cell-to-cell variability
    Mattiazzi Usaj, Mojca
    Sahin, Nil
    Friesen, Helena
    Pons, Carles
    Usaj, Matej
    Masinas, Myra Paz D.
    Shuteriqi, Ermira
    Shkurin, Aleksei
    Aloy, Patrick
    Morris, Quaid
    Boone, Charles
    Andrews, Brenda J.
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2020, 16 (02)
  • [10] Measuring cell-to-cell expression variability in single-cell RNA-sequencing data: a comparative analysis and applications to B cell aging
    Zheng H.
    Vijg J.
    Fard A.T.
    Mar J.C.
    [J]. Genome Biology, 24 (1):