A Nonconforming Finite Element Method for an Acoustic Fluid-Structure Interaction Problem

被引:6
|
作者
Brenner, Susanne C. [1 ,2 ]
Cesmelioglu, Aycil [3 ]
Cui, Jintao [4 ]
Sung, Li-Yeng [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[3] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[4] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Nonconforming Finite Element Method; Fluid-Structure Interaction; Acoustic Fluid; VIBRATION PROBLEM; PENALTY METHOD; SOLID SYSTEMS; APPROXIMATION; COMPUTATION; FORMULATION; EQUATIONS; MODES;
D O I
10.1515/cmam-2017-0050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonconforming finite element approximation of the vibration modes of an acoustic fluid-structure interaction. Displacement variables are used for both the fluid and the solid. The numerical scheme is based on an irrotational fluid displacement formulation and hence it is free of spurious eigen-modes. The method uses weakly continuous P-1 vector fields for the fluid and classical piecewise linear elements for the solid, and it has O(h(2)) convergence for the eigenvalues on properly graded meshes. The theoretical results are confirmed by numerical experiments.
引用
收藏
页码:383 / 406
页数:24
相关论文
共 50 条
  • [11] FINITE ELEMENT APPROXIMATION OF THE EXTENDED FLUID-STRUCTURE INTERACTION (EXFSI) PROBLEM
    Hai, Bhuiyan Shameem Mahmood Ebna
    Bause, Markus
    Kuberry, Paul
    [J]. PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2016, VOL 1A, 2016,
  • [12] Semidiscrete finite element approximations of a linear fluid-structure interaction problem
    Du, Q
    Gunzburger, MD
    Hou, LS
    Lee, J
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (01) : 1 - 29
  • [13] Convergence analysis and error estimate of finite element method of a nonlinear fluid-structure interaction problem
    Zhao, Xin
    Liu, Xin
    Li, Jian
    [J]. AIMS MATHEMATICS, 2020, 5 (05): : 5240 - 5260
  • [14] A FLUID-STRUCTURE INTERACTION PROBLEM IN BIOMECHANICS - PRESTRESSED VIBRATIONS OF THE EYE BY THE FINITE-ELEMENT METHOD
    COQUART, L
    DEPEURSINGE, C
    CURNIER, A
    OHAYON, R
    [J]. JOURNAL OF BIOMECHANICS, 1992, 25 (10) : 1105 - 1118
  • [15] Full Eulerian finite element method of a phase field model for fluid-structure interaction problem
    Sun, Pengtao
    Xu, Jinchao
    Zhang, Lixiang
    [J]. COMPUTERS & FLUIDS, 2014, 90 : 1 - 8
  • [16] A SYMMETRIC FINITE-ELEMENT FORMULATION FOR ACOUSTIC FLUID-STRUCTURE INTERACTION ANALYSIS
    SANDBERG, G
    GORANSSON, P
    [J]. JOURNAL OF SOUND AND VIBRATION, 1988, 123 (03) : 507 - 515
  • [17] Benchmarking the immersed finite element method for fluid-structure interaction problems
    Roy, Saswati
    Heltai, Luca
    Costanzo, Francesco
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (10) : 1167 - 1188
  • [18] Numerical Solution of Fluid-Structure Interaction Problems by Finite Element Method
    Svacek, P.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 661 - 664
  • [19] AN IMMERSED SMOOTHED FINITE ELEMENT METHOD FOR FLUID-STRUCTURE INTERACTION PROBLEMS
    Zhang, Zhi-Qian
    Yao, Jianyao
    Liu, G. R.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2011, 8 (04) : 747 - 757
  • [20] Modeling fluid-structure interaction by the particle finite element method in OpenSees
    Zhu, Minjie
    Scott, Michael H.
    [J]. COMPUTERS & STRUCTURES, 2014, 132 : 12 - 21