A Nonconforming Finite Element Method for an Acoustic Fluid-Structure Interaction Problem

被引:6
|
作者
Brenner, Susanne C. [1 ,2 ]
Cesmelioglu, Aycil [3 ]
Cui, Jintao [4 ]
Sung, Li-Yeng [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[3] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[4] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Nonconforming Finite Element Method; Fluid-Structure Interaction; Acoustic Fluid; VIBRATION PROBLEM; PENALTY METHOD; SOLID SYSTEMS; APPROXIMATION; COMPUTATION; FORMULATION; EQUATIONS; MODES;
D O I
10.1515/cmam-2017-0050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonconforming finite element approximation of the vibration modes of an acoustic fluid-structure interaction. Displacement variables are used for both the fluid and the solid. The numerical scheme is based on an irrotational fluid displacement formulation and hence it is free of spurious eigen-modes. The method uses weakly continuous P-1 vector fields for the fluid and classical piecewise linear elements for the solid, and it has O(h(2)) convergence for the eigenvalues on properly graded meshes. The theoretical results are confirmed by numerical experiments.
引用
收藏
页码:383 / 406
页数:24
相关论文
共 50 条
  • [1] A nonconforming finite element method for fluid-structure interaction problems
    Swim, EW
    Seshaiyer, P
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (17-18) : 2088 - 2099
  • [2] NONCONFORMING MIXED FINITE ELEMENT APPROXIMATION OF A FLUID-STRUCTURE INTERACTION SPECTRAL PROBLEM
    Meddahi, Salim
    Mora, David
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (01): : 269 - 287
  • [3] Fluid-structure interaction using nonconforming finite element methods
    Swim, E
    Seshaiyer, P
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 217 - 224
  • [4] A monolithic mixed finite element method for a fluid-structure interaction problem
    Bean, Maranda
    Yi, Son-Young
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
  • [6] A NITSCHE-BASED CUT FINITE ELEMENT METHOD FOR A FLUID-STRUCTURE INTERACTION PROBLEM
    Massing, Andre
    Larson, Mats G.
    Logg, Anders
    Rognes, Marie E.
    [J]. COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2015, 10 (02) : 97 - 120
  • [7] Fluid-structure interaction using the particle finite element method
    Idelsohn, SR
    Oñate, E
    Del Pin, F
    Calvo, N
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (17-18) : 2100 - 2123
  • [8] A finite element method for fluid-structure interaction with surface waves
    Oñate, E
    García, J
    [J]. TRENDS IN COMPUTATIONAL STRUCTURAL MECHANICS, 2001, : 709 - 730
  • [9] A fluid-structure interaction analysis by ALE finite element method
    Watanabe, S
    Hirano, H
    Kawahara, M
    [J]. NUMERICAL METHODS IN ENGINEERING '96, 1996, : 894 - 897
  • [10] FINITE ELEMENT APPROXIMATION OF THE EXTENDED FLUID-STRUCTURE INTERACTION (EXFSI) PROBLEM
    Hai, Bhuiyan Shameem Mahmood Ebna
    Bause, Markus
    Kuberry, Paul
    [J]. PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2016, VOL 1A, 2016,