A Self-Adaptive Method for Split Common Null Point Problems and Fixed Point Problems for Multivalued Bregman Quasi-Nonexpansive Mappings in Banach Spaces

被引:0
|
作者
Jailoka, Pachara [1 ]
Suantai, Suthep [2 ,3 ]
Sunthrayuth, Pongsakorn [4 ]
机构
[1] Univ Phayao, Sch Sci, Dept Math, Phayao 56000, Thailand
[2] Chiang Mai Univ, Fac Sci, Res Ctr Math & Appl Math, Dept Math, Chiang Mai 50200, Thailand
[3] Chiang Mai Univ, Fac Sci, Data Sci Res Ctr, Dept Math, Chiang Mai 50200, Thailand
[4] Rajamangala Univ Technol Thanyaburi RMUTT, Fac Sci & Technol, Dept Math & Comp Sci, 39 Rangsit Nakhonnayok Rd,Klong 6, Thanyaburi 12110, Pathumthani, Thailand
关键词
Resolvent operators; Banach spaces; strong convergence; fixed point problems; SHRINKING PROJECTION METHOD; ITERATIVE ALGORITHMS; FEASIBILITY PROBLEMS; STRONG-CONVERGENCE; INEQUALITIES; THEOREMS; SETS;
D O I
10.2298/FIL2210279J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a self-adaptive algorithm for solving the split common null point problem and the fixed point problem for multivalued Bregman quasi-nonexpansive mappings in Banach spaces. We prove that the sequence generated by our iterative scheme converges strongly to a common solution of the above-mentioned problems under some suitable conditions. We also apply our main result to split feasibility problems in Banach spaces. Finally, numerical examples are given to support our main theorem. The results presented in this paper improve and extend many recent results in the literature.
引用
收藏
页码:3279 / 3300
页数:22
相关论文
共 50 条
  • [21] THE SPLIT COMMON FIXED POINT PROBLEM FOR QUASI-NONEXPANSIVE MAPPINGS IN CAT(0) SPACES
    Deng, Wei-Qi
    Qian, Shanguang
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (11) : 2075 - 2081
  • [22] SPLIT EQUALITY FIXED POINT PROBLEMS OF QUASI-NONEXPANSIVE OPERATORS IN HILBERT SPACES
    Tian, Dianlu
    Jiang, Lining
    Shi, Luoyi
    Chen, Rudong
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019
  • [23] Fixed point approximation of multivalued ρ-quasi-nonexpansive mappings in modular function spaces
    Khan, Safeer Hussain
    Abbas, Mujahid
    Ali, Sartaj
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 3168 - 3179
  • [24] Split Common Null Point and Common Fixed Point Problems Between Banach Spaces and Hilbert Spaces
    Eslamian, M.
    Eskandani, G. Zamani
    Raeisi, M.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (03)
  • [25] Split Common Null Point and Common Fixed Point Problems Between Banach Spaces and Hilbert Spaces
    M. Eslamian
    G. Zamani Eskandani
    M. Raeisi
    [J]. Mediterranean Journal of Mathematics, 2017, 14
  • [26] A Modified Proximal Point Algorithm for Finite Families of Minimization Problems and Fixed Point Problems of Asymptotically Quasi-nonexpansive Multivalued Mappings
    Agwu, Imo Kalu
    Igbokwe, Donatus Ikechi
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2022, 54 (08): : 495 - 522
  • [27] Approximating a common fixed point of finite family of asymptotically quasi-nonexpansive mappings in Banach spaces
    Woldeamanuel S.T.
    Sangago M.G.
    Hailu H.Z.
    [J]. Afrika Matematika, 2016, 27 (5-6) : 949 - 961
  • [28] An iterative algorithm for solving equilibrium problems, variational inequalities and fixed point problems of multivalued quasi-nonexpansive mappings
    Sow, T.M.M.
    [J]. Applied Set-Valued Analysis and Optimization, 2019, 1 (02): : 171 - 185
  • [29] COMMON FIXED POINT THEOREMS FOR MULTIVALUED GENERALIZED (a,β)-NONEXPANSIVE MAPPINGS IN BANACH SPACES
    Wiriyapongsanon, Atit
    Inthakon, Warunun
    Phudolsitthiphat, Narawadee
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (11) : 2513 - 2529
  • [30] CONVERGENCE ANALYSIS OF FIXED POINT ITERATION FOR QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES
    Tang, Yan
    Zhou, Haiyun
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (09) : 2065 - 2076