Feature Selection of Corn Seed Based on Genetic Algorithm and Support Vector Machine

被引:0
|
作者
Cheng Hong
Pang Li Xin
机构
关键词
Genetic algorithm; Support Vector Machine; Feature selection; Corn seed;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Studying on corn breed identification based on digital image of the corn seed, it is significant to find out new valuable features for improving recognition rate of corn breed. This paper adopts the algorithm of genetic algorithm (GA) combined with Support Vector Machine (SVM) to optimizing the features of corn. seed. During optimizing process, New features which have greater contributions to recognition are found out from the color and shape features of white part (embryo department) and yellow part (coronal department) of corn seed.
引用
收藏
页码:494 / 499
页数:6
相关论文
共 50 条
  • [1] A Parallel Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Machine
    Chen, Zhi
    Lin, Tao
    Tang, Ningjiu
    Xia, Xin
    [J]. SCIENTIFIC PROGRAMMING, 2016, 2016
  • [2] Feature selection using hybrid Taguchi genetic algorithm and support vector machine
    Tang, Wanmei
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2010, : 434 - 439
  • [3] Reseach on Feature Selection Algorithm Based on the margin of Support Vector Machine
    Hu, Linfang
    Qiao, Lei
    Huang, Minde
    [J]. MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 1430 - 1434
  • [4] An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
    Li, Shijin
    Wu, Hao
    Wan, Dingsheng
    Zhu, Jiali
    [J]. KNOWLEDGE-BASED SYSTEMS, 2011, 24 (01) : 40 - 48
  • [5] Unsupervised feature selection algorithm based on support vector machine for network data
    Dai, Kun
    Yu, Hong-Yi
    Qiu, Wen-Bo
    Li, Qing
    [J]. Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2015, 45 (02): : 576 - 582
  • [6] A memetic algorithm with support vector machine for feature selection and classification
    Nekkaa, Messaouda
    Boughaci, Dalila
    [J]. MEMETIC COMPUTING, 2015, 7 (01) : 59 - 73
  • [7] A memetic algorithm with support vector machine for feature selection and classification
    Messaouda Nekkaa
    Dalila Boughaci
    [J]. Memetic Computing, 2015, 7 : 59 - 73
  • [8] Hybrid feature selection approach for power transformer fault diagnosis based on support vector machine and genetic algorithm
    Kari, Tusongjiang
    Gao, Wensheng
    Zhao, Dongbo
    Abiderexiti, Kaherjiang
    Mo, Wenxiong
    Wang, Yong
    Luan, Le
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2018, 12 (21) : 5672 - 5680
  • [9] Feature selection of spectral dimension by hyperspectral remote sensing images based on genetic algorithm and support vector machine
    Li, Huan
    Luo, Hongxia
    Zhu, Zlyi
    [J]. REMOTE SENSING AND GIS DATA PROCESSING AND APPLICATIONS; AND INNOVATIVE MULTISPECTRAL TECHNOLOGY AND APPLICATIONS, PTS 1 AND 2, 2007, 6790
  • [10] Support vector machine tree based on feature selection
    Xu, Qinzhen
    Pei, Wenjiang
    Yang, Luxi
    He, Zhenya
    [J]. NEURAL INFORMATION PROCESSING, PT 1, PROCEEDINGS, 2006, 4232 : 856 - 863