A memetic algorithm with support vector machine for feature selection and classification

被引:39
|
作者
Nekkaa, Messaouda [1 ]
Boughaci, Dalila [2 ]
机构
[1] Univ MHamed Bougara Boumerdes, Dept Comp Sci, Fac Sci, LIMOSE Lab, Boumerdes 35000, Algeria
[2] USTHB, LRIA Comp Sci Dept, Algiers 16111, Algeria
关键词
Memetic algorithm (MA); Support vector machine (SVM); Genetic algorithm (GA); Stochastic local search (SLS); Classification; Feature selection; Cross validation; Parameters optimization; Data mining;
D O I
10.1007/s12293-015-0153-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The memetic algorithm (MA) is an evolutionary metaheuristic that can be viewed as a hybrid genetic algorithm combined with some kinds of local search. In this paper, we propose a memetic algorithm combined with a support vector machine (SVM) for feature selection and classification in Data mining. The proposed approach tries to find a subset of features that maximizes the classification accuracy rate of SVM. In addition, another hybrid algorithm of MA and SVM with optimized parameters is also developed. The two versions of our proposed method are evaluated on some datasets and compared with some well-known classifiers for data classification. The computational experiments show that the hybrid method MA + SVM with optimized parameters provides competitive results and finds high quality solutions.
引用
收藏
页码:59 / 73
页数:15
相关论文
共 50 条
  • [1] A memetic algorithm with support vector machine for feature selection and classification
    Messaouda Nekkaa
    Dalila Boughaci
    [J]. Memetic Computing, 2015, 7 : 59 - 73
  • [2] Evaluation of Feature Selection Method for Classification of Data Using Support Vector Machine Algorithm
    Veeraswamy, A.
    Balamurugan, S. Appavu Alias
    Kannan, E.
    [J]. ICT AND CRITICAL INFRASTRUCTURE: PROCEEDINGS OF THE 48TH ANNUAL CONVENTION OF COMPUTER SOCIETY OF INDIA - VOL I, 2014, 248 : 179 - 186
  • [3] A feature selection Newton method for support vector machine classification
    Fung, GM
    Mangasarian, OL
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2004, 28 (02) : 185 - 202
  • [4] Feature Selection for Cancer Classification Based on Support Vector Machine
    Luo, Wei
    Wang, Lipo
    Sun, Jingjing
    [J]. PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL IV, 2009, : 422 - +
  • [5] A Feature Selection Newton Method for Support Vector Machine Classification
    Glenn M. Fung
    O.L. Mangasarian
    [J]. Computational Optimization and Applications, 2004, 28 : 185 - 202
  • [6] Optimization Approach for Feature Selection and Classification with Support Vector Machine
    Chidambaram, S.
    Srinivasagan, K. G.
    [J]. COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 1, CIDM 2015, 2016, 410 : 103 - 111
  • [7] Integration of feature vector selection and support vector machine for classification of imbalanced data
    Liu, Jie
    Zio, Enrico
    [J]. APPLIED SOFT COMPUTING, 2019, 75 : 702 - 711
  • [8] Artificial bee colony algorithm for feature selection and improved support vector machine for text classification
    Balakumar, Janani
    Mohan, S. Vijayarani
    [J]. INFORMATION DISCOVERY AND DELIVERY, 2019, 47 (03) : 154 - 170
  • [9] A feature selection method for nonparallel plane support vector machine classification
    Ye, Qiaolin
    Zhao, Chunxia
    Ye, Ning
    Zheng, Hao
    Chen, Xiaobo
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (03): : 431 - 443
  • [10] Feature selection and classification using support vector machine and decision tree
    Durgalakshmi, B.
    Vijayakumar, V.
    [J]. COMPUTATIONAL INTELLIGENCE, 2020, 36 (04) : 1480 - 1492