Thermal scanning probe lithography

被引:17
|
作者
Albisetti, Edoardo [1 ]
Calo, Annalisa [2 ,3 ]
Zanut, Alessandra [4 ]
Zheng, Xiaorui [5 ]
de Peppo, Giuseppe Maria [4 ]
Riedo, Elisa [4 ]
机构
[1] Polytech Univ Milan, Dept Phys, Milan, Italy
[2] Univ Barcelona, Dept Elect & Biomed Engn, Barcelona, Spain
[3] Inst Bioengn Catalonia IBEC, Nanoscale Bioelect Characterizat Grp, Barcelona, Spain
[4] NYU, Tandon Sch Engn, New York, NY 10003 USA
[5] Westlake Univ, Sch Engn, Hangzhou, Zhejiang, Peoples R China
来源
NATURE REVIEWS METHODS PRIMERS | 2022年 / 2卷 / 01期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
FORCE MICROSCOPE CANTILEVERS; THERMOCHEMICAL NANOLITHOGRAPHY; BEAM LITHOGRAPHY; FEATURE SIZE; SILICON; POLYMER; TIP; DESIGN; SPEED; MOS2;
D O I
10.1038/s43586-022-00110-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermal scanning probe lithography (tSPL) is a nanofabrication method for the chemical and physical nanopatterning of a large variety of materials and polymer resists with a lateral resolution of 10 nm and a depth resolution of 1 nm. In this Primer, we describe the working principles of tSPL and highlight the characteristics that make it a powerful tool to locally and directly modify material properties in ambient conditions. We introduce the main features of tSPL, which can pattern surfaces by locally delivering heat using nanosized thermal probes. We define the most critical patterning parameters in tSPL and describe post-patterning analysis of the obtained results. The main sources of reproducibility issues related to the probe and the sample as well as the limitations of the tSPL technique are discussed together with mitigation strategies. The applications of tSPL covered in this Primer include those in biomedicine, nanomagnetism and nanoelectronics; specifically, we cover the fabrication of chemical gradients, tissue-mimetic surfaces, spin wave devices and field-effect transistors based on two-dimensional materials. Finally, we provide an outlook on new strategies that can improve tSPL for future research and the fabrication of next-generation devices.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Nanometer control of the markerless overlay process using thermal Scanning Probe Lithography
    Rawlings, Colin
    Duerig, Urs
    Hedrick, James
    Coady, Dan
    Knoll, Armin
    2014 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2014, : 1670 - 1675
  • [22] Exploiting Thermal Scanning Probe Lithography for the Fabrication of Micro and Nano Electronic Devices
    Pellegrini, Paloma E. S.
    Nista, Silvia V. G.
    De lara, Daniel
    Canesqui, Mara Adriana
    Bortolucci, Emilio Carlos
    Moshkalev, Stanislav
    2023 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS, OMN AND SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE, SBFOTON IOPC, 2023,
  • [23] THERMAL SCANNING PROBE LITHOGRAPHY (t-SPL) FOR NANO-FABRICATION
    Wolf, Heiko
    Cho, Yu K. Ryu
    Karg, Siegfried
    Mensch, Philipp
    Schwemmer, Christian
    Knoll, Armin
    Spieser, Martin
    Bisig, Samuel
    Rawlings, Colin
    Paul, Philip
    Holzner, Felix
    Duerig, Urs
    2019 PAN PACIFIC MICROELECTRONICS SYMPOSIUM (PAN PACIFIC), 2019,
  • [24] Thermal scanning probe lithography for the directed self-assembly of block copolymers
    Gottlieb, S.
    Lorenzoni, M.
    Evangelio, L.
    Fernandez-Regulez, M.
    Ryu, Y. K.
    Rawlings, C.
    Spieser, M.
    Knoll, A. W.
    Perez-Murano, F.
    NANOTECHNOLOGY, 2017, 28 (17)
  • [25] Nanometer Accurate Markerless Pattern Overlay Using Thermal Scanning Probe Lithography
    Rawlings, Colin
    Duerig, Urs
    Hedrick, James
    Coady, Dan
    Knoll, Armin W.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (06) : 1204 - 1212
  • [26] Nanofabrication of graphene field-effect transistors by thermal scanning probe lithography
    Liu, Xiangyu
    Huang, Zhujun
    Zheng, Xiaorui
    Shahrjerdi, Davood
    Riedo, Elisa
    APL MATERIALS, 2021, 9 (01)
  • [27] Substrate alignment with scanning probe lithography
    Lee, M.V. (LEE.Michael@nims.go.jp), 1600, Royal Society of Chemistry
  • [28] Combining thermal scanning probe lithography and dry etching for grayscale nanopattern amplification
    Erbas, Berke
    Conde-Rubio, Ana
    Liu, Xia
    Pernollet, Joffrey
    Wang, Zhenyu
    Bertsch, Arnaud
    Penedo, Marcos
    Fantner, Georg
    Banerjee, Mitali
    Kis, Andras
    Boero, Giovanni
    Brugger, Juergen
    MICROSYSTEMS & NANOENGINEERING, 2024, 10 (01)
  • [29] Phase Nanoengineering via Thermal Scanning Probe Lithography and Direct Laser Writing
    Levati, Valerio
    Girardi, Davide
    Pellizzi, Nicola
    Panzeri, Matteo
    Vitali, Matteo
    Petti, Daniela
    Albisetti, Edoardo
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (16):
  • [30] Combining thermal scanning probe lithography and dry etching for grayscale nanopattern amplification
    Berke Erbas
    Ana Conde-Rubio
    Xia Liu
    Joffrey Pernollet
    Zhenyu Wang
    Arnaud Bertsch
    Marcos Penedo
    Georg Fantner
    Mitali Banerjee
    Andras Kis
    Giovanni Boero
    Juergen Brugger
    Microsystems & Nanoengineering, 10