Alperin's weight conjecture in terms of linear source modules and trivial source modules

被引:0
|
作者
Boltje, R [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend Knorr's and Robinson's reformulation of the blockwise version of Alperin's weight conjecture by showing that the alternating sum they introduced does not change its value if the terms which count simple modules are replaced by terms which count indecomposable linear source or trivial source modules. A more general result is established for quantities attached to finite groups admitting a defect group theory such that an analogue of Brauer's first main theorem or the Green correspondence holds.
引用
收藏
页码:147 / 155
页数:9
相关论文
共 50 条
  • [21] MODULES WITH SMALL SOURCE
    ROBINSON, GR
    JOURNAL OF ALGEBRA, 1988, 114 (01) : 53 - 57
  • [22] Alperin's weight conjecture and chain complexes
    Boltje, R
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 : 83 - 101
  • [23] The Alperin weight conjecture for symmetric and general linear groups revisited
    Fong, Paul
    JOURNAL OF ALGEBRA, 2020, 558 : 395 - 410
  • [24] Two remarks on the reduction of Alperin's weight conjecture
    Cabanes, Marc
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 895 - 906
  • [25] Trivial source endo-trivial modules for finite groups with semi-dihedral Sylow 2-subgroups
    Shigeo Koshitani
    Caroline Lassueur
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 233 - 246
  • [26] Trivial source endo-trivial modules for finite groups with semi-dihedral Sylow 2-subgroups
    Koshitani, Shigeo
    Lassueur, Caroline
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022, 63 (02): : 233 - 246
  • [27] The Alperin weight conjecture and Uno's conjecture for the Monster M, p odd
    An, Jianbei
    Wilson, R. A.
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2010, 13 : 320 - 356
  • [28] Artin's conjecture for Drinfeld modules
    Kuo, Wentang
    Tweedle, David
    ALGEBRA & NUMBER THEORY, 2022, 16 (05) : 1025 - 1070
  • [29] Koszul modules and Green’s conjecture
    Marian Aprodu
    Gavril Farkas
    Ştefan Papadima
    Claudiu Raicu
    Jerzy Weyman
    Inventiones mathematicae, 2019, 218 : 657 - 720
  • [30] Koszul modules and Green's conjecture
    Aprodu, Marian
    Farkas, Gavril
    Papadima, Stefan
    Raicu, Claudiu
    Weyman, Jerzy
    INVENTIONES MATHEMATICAE, 2019, 218 (03) : 657 - 720