Multiple travelling-wave solutions in a minimal model for cell motility

被引:18
|
作者
Kimpton, L. S. [1 ]
Whiteley, J. P. [2 ]
Waters, S. L. [3 ]
King, J. R. [4 ]
Oliver, J. M. [3 ]
机构
[1] Univ Oxford, Inst Math, OCCAM, Oxford OX1 3LB, England
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[3] Univ Oxford, Inst Math, OCIAM, Oxford OX1 3LB, England
[4] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
cell crawling; cell adhesion; two-phase; reactive; poroviscous; FLUORESCENT SPECKLE MICROSCOPY; FLOW MODELS; FILAMENTOUS ACTIN; CONTINUUM MODEL; MIGRATION SPEED; REACTIVE FLOW; 2-PHASE FLOW; MYOSIN-II; MECHANICS; MOTION;
D O I
10.1093/imammb/dqs023
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two-phase flow models have been used previously to model cell motility. In order to reduce the complexity inherent with describing the many physical processes, we formulate a minimal model. Here we demonstrate that even the simplest 1D, two-phase, poroviscous, reactive flow model displays various types of behaviour relevant to cell crawling. We present stability analyses that show that an asymmetric perturbation is required to cause a spatially uniform, stationary strip of cytoplasm to move, which is relevant to cell polarization. Our numerical simulations identify qualitatively distinct families of travelling-wave solutions that coexist at certain parameter values. Within each family, the crawling speed of the strip has a bell-shaped dependence on the adhesion strength. The model captures the experimentally observed behaviour that cells crawl quickest at intermediate adhesion strengths, when the substrate is neither too sticky nor too slippy.
引用
收藏
页码:241 / 272
页数:32
相关论文
共 50 条
  • [41] Periodic and solitary travelling-wave solutions of a CH-DP equation
    Xie, Shaolong
    Lin, Qian
    Gao, Bin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (10) : 3941 - 3948
  • [42] Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods
    Dai, HH
    WAVE MOTION, 1998, 28 (04) : 367 - 381
  • [43] Classification of all travelling-wave solutions for some nonlinear dispersive equations
    Lenells, Jonatan
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 365 (1858): : 2291 - 2298
  • [44] Travelling-wave amplitudes as solutions of the phase-field crystal equation
    Nizovtseva, I. G.
    Galenko, P. K.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2113):
  • [45] Stationary travelling-wave solutions of an unstable KdV-Burgers equation
    Feng, BF
    Kawahara, T
    PHYSICA D, 2000, 137 (3-4): : 228 - 236
  • [46] Multiple travelling wave solutions for electrical transmission line model
    A. Sardar
    S. M. Husnine
    S. T. R. Rizvi
    M. Younis
    K. Ali
    Nonlinear Dynamics, 2015, 82 : 1317 - 1324
  • [47] Multiple travelling wave solutions for electrical transmission line model
    Sardar, A.
    Husnine, S. M.
    Rizvi, S. T. R.
    Younis, M.
    Ali, K.
    NONLINEAR DYNAMICS, 2015, 82 (03) : 1317 - 1324
  • [48] POSITIVITY PROPERTIES OF THE FOURIER TRANSFORM AND THE STABILITY OF PERIODIC TRAVELLING-WAVE SOLUTIONS
    Pava, Jaime Angulo
    Natali, Fabio M. A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (03) : 1123 - 1151
  • [49] SPATIAL INSTABILITY OF TRAVELLING-WAVE SOLUTIONS OF A NERVE-CONDUCTION EQUATION
    RINZEL, J
    KELLER, JB
    SIAM REVIEW, 1975, 17 (02) : 387 - 388
  • [50] New binary travelling-wave periodic solutions for the modified KdV equation
    Yan, Zhenya
    PHYSICS LETTERS A, 2008, 372 (07) : 969 - 977