Exploring multiple communities with kernel-based link analysis

被引:0
|
作者
Ito, Takahiko [1 ]
Shimbo, Masashi [1 ]
Mochihashi, Daichi [1 ]
Matsumoto, Yuji [1 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Informat Sci, Nara, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We discuss issues raised by applying von Neumann kernels to graphs with multiple communities. Depending on the parameter setting, Kandola et al.'s von Neumann kernels can identify not only nodes related to a given node but also the most important nodes in a graph. However, when von Neumann kernels are biased towards importance, top-ranked nodes are the important nodes in the dominant community of the graph irrespective of the communities where the target node belongs. To solve this "topic-drift" problem, we apply von Neumann kernels to the weighted graphs (community graph), which are derived from a generative model of links.
引用
收藏
页码:235 / 246
页数:12
相关论文
共 50 条
  • [21] Fast Kernel-Based Independent Component Analysis
    Shen, Hao
    Jegelka, Stefanie
    Gretton, Arthur
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (09) : 3498 - 3511
  • [22] Fast methods for Kernel-based text analysis
    Kudo, T
    Matsumoto, Y
    [J]. 41ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, 2003, : 24 - 31
  • [23] Kernel-based nonlinear independent component analysis
    Zhang, Kun
    Chan, Laiwan
    [J]. INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2007, 4666 : 301 - +
  • [24] Kernel-Based Smoothness Analysis of Residual Networks
    Tirer, Tom
    Bruna, Joan
    Giryes, Raja
    [J]. MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 145, 2021, 145 : 921 - 954
  • [25] A kernel-based framework to tensorial data analysis
    Signoretto, Marco
    De Lathauwer, Lieven
    Suykens, Johan A. K.
    [J]. NEURAL NETWORKS, 2011, 24 (08) : 861 - 874
  • [26] A General Framework for the Analysis of Kernel-based Tests
    Fernandez, Tamara
    Rivera, Nicolas
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [27] Kernel-based subspace analysis for face recognition
    Tsai, Pohsiang
    Jan, Tony
    Hintz, Tom
    [J]. 2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 1127 - 1132
  • [28] Kernel-based SPS
    Pillonetto, Gianluigi
    Care, Algo
    Campi, Marco C.
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 31 - 36
  • [29] The Characteristics of Kernel and Kernel-based Learning
    Tan, Fuxiao
    Han, Dezhi
    [J]. 2019 3RD INTERNATIONAL SYMPOSIUM ON AUTONOMOUS SYSTEMS (ISAS 2019), 2019, : 406 - 411
  • [30] Kernel-based clustering
    Piciarelli, C.
    Micheloni, C.
    Foresti, G. L.
    [J]. ELECTRONICS LETTERS, 2013, 49 (02) : 113 - U7