Critical factors limiting the interpretation of regression vectors in multivariate calibration

被引:43
|
作者
Brown, Christopher D. [1 ]
Green, Robert L. [1 ]
机构
[1] Ahura Sci, Wilmington, MA 01887 USA
关键词
Bias; Chemometrics; Errors in variables; Figure of merit; Interpretation; Inverse calibration; Multivariate calibration; Regression vector; Selectivity; Validation; PARTIAL LEAST-SQUARES; NET ANALYTE SIGNAL; QUALITATIVE INFORMATION; CLASSICAL CALIBRATION; SELECTIVITY ANALYSIS; SPECTRAL ANALYSES; FRAMEWORK; FIGURES; MODELS; MERIT;
D O I
10.1016/j.trac.2009.02.003
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
It is common to see published manuscripts and presentations making interpretive comments about correct or incorrect features of the regression vector obtained from multivariate-calibration methods. While model validation is crucial, a considerable body of literature casts doubt on the value of qualitative interpretation of the regression vector. Following a review of this literature, we discuss two simple examples, which illustrate the exceptionally complex behavior of the inverse calibration methods that dominate current chemometrics practice. We show that the behavior of regression vectors in inverse calibration is too complex to be interpreted transparently unless an unusual amount of system information is available. If explicit information about sensitivity and selectivity is desired, it should be quantified using conventional figures of merit. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:506 / 514
页数:9
相关论文
共 50 条
  • [21] Combining support vector regression with feature selection for multivariate calibration
    Li, Guo-Zheng
    Meng, Hao-Hua
    Yang, Mary Qu
    Yang, Jack Y.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2009, 18 (07): : 813 - 820
  • [22] ROBUST REGRESSION USED FOR THE TREATMENT OF PARTIAL NONLINEARITY IN MULTIVARIATE CALIBRATION
    XIE, YL
    LIANG, YZ
    JIANG, JH
    YU, RQ
    [J]. ANALYTICA CHIMICA ACTA, 1995, 313 (03) : 185 - 196
  • [23] Multivariate calibration - Direct and indirect regression methodology - Discussion and comments
    Brown, PJ
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1999, 26 (02) : 192 - 193
  • [24] A method for electrical calibration of MEMS accelerometers through multivariate regression
    Dumas, N.
    Azais, F.
    Mailly, F.
    Nouet, P.
    [J]. 2009 IEEE 15TH INTERNATIONAL MIXED-SIGNALS, SENSORS, AND SYSTEMS TEST WORKSHOPS, 2009, : 19 - 24
  • [25] A weighted multiscale regression for multivariate calibration of near infrared spectra
    Liu, Zhichao
    Cai, Wensheng
    Shao, Xueguang
    [J]. ANALYST, 2009, 134 (02) : 261 - 266
  • [26] Using the L1 norm to select basis set vectors for multivariate calibration and calibration updating
    Shahbazikhah, Parviz
    Kalivas, John H.
    Andries, Erik
    O'Loughlin, Trevor
    [J]. JOURNAL OF CHEMOMETRICS, 2016, 30 (03) : 109 - 120
  • [27] Exploring the Critical Factors Limiting Polyaniline Biocompatibility
    Kasparkova, Vera
    Humpolicek, Petr
    Stejskal, Jaroslav
    Capakova, Zdenka
    Bober, Patrycja
    Skopalova, Katerina
    Lehocky, Marian
    [J]. POLYMERS, 2019, 11 (02)
  • [28] Limiting behavior of recursive M-estimators in multivariate linear regression models
    Miao, BQ
    Wu, Y
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1996, 59 (01) : 60 - 80
  • [29] A Numerical Procedure for Multivariate Calibration Using Heteroscedastic Principal Components Regression
    Duailibe Monteiro, Alessandra da Rocha
    Feital, Thiago de Sa
    Pinto, Jose Carlos
    [J]. PROCESSES, 2021, 9 (09)
  • [30] COMPARISON OF VARIABLE SELECTION AND REGRESSION METHODS IN MULTIVARIATE CALIBRATION OF A PROCESS ANALYZER
    HEIKKA, R
    MINKKINEN, P
    TAAVITSAINEN, VM
    [J]. PROCESS CONTROL AND QUALITY, 1994, 6 (01): : 47 - 54