Critical factors limiting the interpretation of regression vectors in multivariate calibration

被引:43
|
作者
Brown, Christopher D. [1 ]
Green, Robert L. [1 ]
机构
[1] Ahura Sci, Wilmington, MA 01887 USA
关键词
Bias; Chemometrics; Errors in variables; Figure of merit; Interpretation; Inverse calibration; Multivariate calibration; Regression vector; Selectivity; Validation; PARTIAL LEAST-SQUARES; NET ANALYTE SIGNAL; QUALITATIVE INFORMATION; CLASSICAL CALIBRATION; SELECTIVITY ANALYSIS; SPECTRAL ANALYSES; FRAMEWORK; FIGURES; MODELS; MERIT;
D O I
10.1016/j.trac.2009.02.003
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
It is common to see published manuscripts and presentations making interpretive comments about correct or incorrect features of the regression vector obtained from multivariate-calibration methods. While model validation is crucial, a considerable body of literature casts doubt on the value of qualitative interpretation of the regression vector. Following a review of this literature, we discuss two simple examples, which illustrate the exceptionally complex behavior of the inverse calibration methods that dominate current chemometrics practice. We show that the behavior of regression vectors in inverse calibration is too complex to be interpreted transparently unless an unusual amount of system information is available. If explicit information about sensitivity and selectivity is desired, it should be quantified using conventional figures of merit. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:506 / 514
页数:9
相关论文
共 50 条
  • [1] Multivariate Regression with Calibration
    Liu, Han
    Wang, Lie
    Zhao, Tuo
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [2] Multivariate calibration with robust signal regression
    Li, Bin
    Marx, Brian D.
    Chakraborty, Somsubhra
    Weindorf, David C.
    [J]. STATISTICAL MODELLING, 2019, 19 (05) : 524 - 544
  • [3] Multivariate calibration - Direct and indirect regression methodology
    Sundberg, R
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1999, 26 (02) : 161 - 191
  • [4] On the interpretation of weight vectors of linear models in multivariate neuroimaging
    Haufe, Stefan
    Meinecke, Frank
    Goergen, Kai
    Daehne, Sven
    Haynes, John-Dylan
    Blankertz, Benjamin
    Biessgmann, Felix
    [J]. NEUROIMAGE, 2014, 87 : 96 - 110
  • [5] Support vector regression in sum space for multivariate calibration
    Peng, Jiangtao
    Li, Luoqing
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 130 : 14 - 19
  • [6] Selection of the best calibration sample subset for multivariate regression
    Ferre, J
    Rius, FX
    [J]. ANALYTICAL CHEMISTRY, 1996, 68 (09) : 1565 - 1571
  • [7] Maximum correntropy criterion based regression for multivariate calibration
    Peng, Jiangtao
    Guo, Lu
    Hu, Yong
    Rao, KaiFeng
    Xie, Qiwei
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2017, 161 : 27 - 33
  • [8] Application of random forest regression to spectral multivariate calibration
    Ghasemi, Jahan B.
    Tavakoli, Hossein
    [J]. ANALYTICAL METHODS, 2013, 5 (07) : 1863 - 1871
  • [9] Maximum likelihood estimation based regression for multivariate calibration
    Guo, Lu
    Peng, Jiangtao
    Xie, Qiwei
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2018, 189 : 316 - 321
  • [10] Multivariate calibration with single-index signal regression
    Eilers, Paul H. C.
    Li, Bin
    Marx, Brian D.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2009, 96 (02) : 196 - 202