An adaptive domain decomposition coupled finite element-boundary element method for solving problems in elasto-plasticity

被引:19
|
作者
Elleithy, Wael [1 ]
Grzhibovskis, Richards [2 ]
机构
[1] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] Univ Saarland, D-6600 Saarbrucken, Germany
基金
奥地利科学基金会;
关键词
FEM; BEM; adaptive coupling; elasto-plasticity; GALERKIN BEM; FE METHODS; FORMULATIONS; ELASTICITY;
D O I
10.1002/nme.2608
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The purpose of this paper is to present an adaptive finite element-boundary element method (FEM-BEM) coupling method that is valid for both two- and three-dimensional elasto-plastic analyses. The method takes care of the evolution of the elastic and plastic regions. It eliminates the cumbersome of a trial and error process in the identification of the FEM and BEM sub-domains in the standard FEM-BEM coupling approaches. The method estimates the FEM and BEM sub-domains and automatically generates/adapts the FEM and BEM meshes/sub-domains, according to the state of computation. The results for two- and three-dimensional applications in elasto-plasticity show the practicality and the efficiency of the adaptive FEM-BEM coupling method. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:1019 / 1040
页数:22
相关论文
共 50 条
  • [21] Domain decomposition by coupling of finite element method and boundary element method
    Schnack, E
    Szikrai, S
    Türke, K
    COMPUTATIONAL MECHANICS: TECHNIQUES AND DEVELOPMENTS, 2000, : 69 - 74
  • [22] Geometry-aware Domain Decomposition Preconditioning for Hybrid Finite Element-boundary Integral Method
    Gao, Hong-Wei
    Peng, Zhen
    Sheng, Xin-Qing
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 4717 - 4717
  • [23] A Geometry-Aware Domain Decomposition Preconditioning for Hybrid Finite Element-Boundary Integral Method
    Gao, Hong-Wei
    Peng, Zhen
    Sheng, Xin-Qing
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (04) : 1875 - 1885
  • [24] A METHOD OF SOLVING CERTAIN PLANE PROBLEMS OF CONTAINED ELASTO-PLASTICITY
    FRANCIS, PH
    RIM, K
    SIAM REVIEW, 1966, 8 (04) : 567 - &
  • [25] A METHOD OF SOLVING CERTAIN PLANE PROBLEMS OF CONTAINED ELASTO-PLASTICITY
    FRANCIS, PH
    RIM, K
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1967, 15 (04) : 842 - &
  • [26] MODELING OF LAMINATE STRUCTURES IN ELASTO-PLASTICITY WITH A MIXED FINITE-ELEMENT
    LABBE, P
    MIGNOT, A
    SURRY, C
    VERCHERY, G
    APPLIED MATHEMATICAL MODELLING, 1982, 6 (02) : 100 - 104
  • [27] Mixed element formulation for the finite element-boundary integral method
    Meese, J
    Kempel, LC
    Schneider, SW
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2006, 21 (01): : 51 - 62
  • [28] The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems
    Peng, Miaojuan
    Li, Dongming
    Cheng, Yumin
    ENGINEERING STRUCTURES, 2011, 33 (01) : 127 - 135
  • [29] A Coupled Smoothed Finite Element-Boundary Element Method for Structural-Acoustic Analysis of Shell
    Tian, Wanyi
    Yao, Lingyun
    Li, Li
    ARCHIVES OF ACOUSTICS, 2017, 42 (01) : 49 - 59
  • [30] A Cost-Effective Preconditioner for Complete Domain Decomposition Method of Hybrid Finite Element-Boundary Integral
    Gao, Hong-Wei
    Yang, Ming-Lin
    Sheng, Xin-Qing
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (09) : 4964 - 4969