Role of antiangiogenic VEGF-A165b in angiogenesis and systolic function after reperfused myocardial infarction

被引:0
|
作者
Rios-Navarro, Cesar [1 ]
Hueso, Luisa [1 ]
Diaz, Ana [2 ]
Marcos-Garces, Victor [3 ]
Bonanad, Clara [1 ,3 ,4 ]
Ruiz-Sauri, Amparo [1 ,5 ]
Vila, Jose M. [6 ]
Sanz, Maria J. [1 ,7 ,8 ]
Chorro, Francisco J. [1 ,3 ,4 ,9 ]
Piqueras, Laura [1 ,7 ,8 ]
Bodi, Vicente [1 ,3 ,4 ,9 ]
机构
[1] Inst Invest Sanitaria INCLIVA, Avda Menendez Pelayo 4acc, Valencia 46010, Spain
[2] Univ Valencia, Unidad Cent Invest Biomed UCIM, Valencia, Spain
[3] Hosp Clin Univ Valencia, Serv Cardiol, Valencia, Spain
[4] Univ Valencia, Fac Med & Odontol, Dept Med, Valencia, Spain
[5] Univ Valencia, Fac Med & Odontol, Dept Patol, Valencia, Spain
[6] Univ Valencia, Fac Med & Odontol, Dept Fisiol, Valencia, Spain
[7] Ctr Invest Biomed Red Diabet & Enfermedades Metab, Madrid, Spain
[8] Univ Valencia, Fac Med & Odontol, Dept Farmacol, Valencia, Spain
[9] Ctr Invest Biomed Red Enfermedades Cardiovasc CI, Madrid, Spain
来源
REVISTA ESPANOLA DE CARDIOLOGIA | 2021年 / 74卷 / 02期
关键词
Myocardial infarction; Angiogenesis; VEGF-A(165)b; ENDOTHELIAL GROWTH-FACTOR; VEGF-A; ISOFORM; VEGF(165)B;
D O I
10.1016/j.recesp.2020.03.029
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction and objectives: Angiogenesis helps to reestablish microcirculation after myocardial infarction (ML). In this study, we aimed to further understand the role of the antiangiogenic isoform vascular endothelial growth factor (VEGF)-A(165)b after ML and to explore its potential as a coadjuvant therapy to coronary reperfusion. Methods: Two mice MI models were formed: a) permanent coronary ligation (nonreperfused MI); b) transient 45-minute coronary occlusion followed by reperfusion (reperfused MI); in both models, animals underwent echocardiography before euthanasia at day 21 after MI induction. We determined serum and myocardial VEGF-A(165)b levels. In both experimental MI models, we assessed the functional and structural role of VEGF-A(165)b blockade. In a cohort of 104 ST-segment elevation MI patients, circulating VEGF-A(165)b levels were correlated with cardiovascular magnetic resonance-derived left ventricular ejection fraction at 6 months and with the occurrence of adverse events (death, heart failure, and/or reinfarction). Results: In both models, circulating and myocardial VEGF-A(165)b levels were increased 21 days after MI induction. Serum VEGF-A(165)b levels inversely correlated with systolic function evaluated by echocardiography. VEGF-A(165)b blockade increased capillary density, reduced infarct size, and enhanced left ventricular function in reperfused, but not in nonreperfused, MI experiments. In patients, higher VEGF-A(165)b levels correlated with depressed ejection fraction and worse outcomes. Conclusion: In experimental and clinical studies, higher serum VEGF-A(165)b levels are associated with worse systolic function. Their blockade enhances neoangiogenesis, reduces infarct size, and increases ejection fraction in reperfused, but not in nonreperfused, MI experiments. Therefore, VEGF-A(165)b neutralization represents a potential coadjuvant therapy to coronary reperfusion. (C) 2020 Sociedad Espanola de Cardiologia. Published by Elsevier Espana, S.L.U. All rights reserved.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 50 条
  • [31] OSM Enhances Angiogenesis and Improves Cardiac Function after Myocardial Infarction
    Zhang, Xiaotian
    Zhu, Di
    Wei, Liping
    Zhao, Zhijing
    Qi, Xin
    Li, Zongjin
    Sun, Dongdong
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [32] Relationship between Myocardial Edema and Regional Myocardial Function after Reperfused Acute Myocardial Infarction: An MR Imaging Study
    Kidambi, Ananth
    Mather, Adam N.
    Swoboda, Peter
    Motwani, Manish
    Fairbairn, Timothy A.
    Greenwood, John P.
    Plein, Sven
    RADIOLOGY, 2013, 267 (03) : 701 - 708
  • [33] Angiogenesis in a rat model following myocardial infarction induced by hypoxic regulation of VEGF165 gene-transfected EPCs
    She, Qiang
    Xia, Shuang
    Deng, Song-Bai
    Du, Jian-Lin
    Li, Ye-Qing
    He, Li
    Xiao, Jun
    Xiang, Yu-Luan
    MOLECULAR MEDICINE REPORTS, 2012, 6 (06) : 1281 - 1287
  • [34] Heart failure with preserved systolic function after myocardial infarction: A growing burden?
    Ghali, JK
    AMERICAN HEART JOURNAL, 2003, 145 (04) : 575 - 578
  • [35] VEGF(165) Gene Therapy Improves Left Ventricular Function and Exercise Capacity in Diabetic Rats after Myocardial Infarction: Impact on Mortality Rate
    Rodrigues, Bruno
    Mostarda, Cristiano T.
    Rosa, Kaleizu T.
    Markoski, Melissa
    Nardi, Nance B.
    De Angelis, Katia
    Irigoyen, Maria Claudia
    Kalil, Renato A. K.
    JOURNAL OF DIABETES & METABOLISM, 2012, 3
  • [36] Determinants of exercise capacity after myocardial infarction: the role of systolic and diastolic dysfunction
    Azevedo, A. I.
    Fontes-Carvalho, R.
    Sampaio, F.
    Ponte, M.
    Faria, R.
    Teixeira, M.
    Gama Ribeiro, V.
    EUROPEAN HEART JOURNAL, 2013, 34 : 450 - 450
  • [37] Isosteviol improves cardiac function and promotes angiogenesis after myocardial infarction in rats
    Liu, Fei
    Song, Laisi
    Lu, Zhiqiang
    Sun, Tingwei
    Lun, Jingwen
    Zhou, Chengbin
    Sun, Xiouou
    Tan, Wen
    Zhao, Haishan
    CELL AND TISSUE RESEARCH, 2022, 387 (02) : 275 - 285
  • [38] Stem Cell Transplantation: HGF or VEGF Enhance Myocardial Function after Infarction
    Deuse, T.
    Adam, M.
    Fedak, P.
    Robbins, R. C.
    Reichenspurner, H.
    Schrepfer, S.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2011, 30 (04): : S183 - S184
  • [39] Isosteviol improves cardiac function and promotes angiogenesis after myocardial infarction in rats
    Fei Liu
    Laisi Song
    Zhiqiang Lu
    Tingwei Sun
    Jingwen Lun
    Chengbin Zhou
    Xiouou Sun
    Wen Tan
    Haishan Zhao
    Cell and Tissue Research, 2022, 387 : 275 - 285
  • [40] Notch signaling promotes angiogenesis and improves cardiac function after myocardial infarction
    Zhou, Xue-liang
    Zhu, Rong-rong
    Liu, Sheng
    Xu, Hua
    Xu, Xinping
    Wu, Qi-cai
    Liu, Ji-chun
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2018, 119 (08) : 7105 - 7112