Uniqueness in the Cauchy problem for the heat equation

被引:17
|
作者
Chung, SY [1 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
D O I
10.1017/S0013091500020459
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We relax the growth condition in time for uniqueness of solutions of the Cauchy problem for the heat equation as follows: Let u(x,t) be a continuous function on R-n x [0, T] satisfying the heat equation in R-n x (0, t) and the following: (i) There exist constants a > 0, 0 < alpha < 1, and C > 0 such that \u(x, t)\ less than or equal to C exp[(a/t)(z) + a\x\(2)] in R-n x (0, T). (ii) u(x, 0) = 0 for x is an element of R-n. Then u(x, t) = 0 on R-n x [0, T]. We also prove that the condition 0 < alpha < 1 is optimal.
引用
收藏
页码:455 / 468
页数:14
相关论文
共 50 条
  • [1] Uniqueness in the Cauchy problem for the heat equation
    Chung, SY
    [J]. SEVENTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS, PROCEEDINGS, 1997, : 49 - 56
  • [2] Uniqueness in the Cauchy Problem for the Hermite Heat Equation
    Dhungana, Bishnu Prasad
    Hong Chengshao
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (01) : 36 - 41
  • [3] Uniqueness in the Cauchy Problem for the Hermite Heat Equation
    Bishnu Prasad Dhungana
    Hong Chengshao
    [J]. International Journal of Theoretical Physics, 2015, 54 : 36 - 41
  • [4] UNIQUENESS FOR CAUCHY-PROBLEM OF HEAT EQUATION ON DERHAM COMPLEX
    VAUTHIER, J
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (01): : 41 - 43
  • [5] CLASSES OF SUBTEMPERATURES AND UNIQUENESS IN THE CAUCHY-PROBLEM FOR THE HEAT-EQUATION
    WATSON, NA
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1985, 32 : 107 - 115
  • [6] UNIQUENESS OF THE CAUCHY PROBLEM FOR A PARABOLIC TYPE OF EQUATION
    LI, DY
    [J]. DOKLADY AKADEMII NAUK SSSR, 1959, 129 (05): : 979 - 982
  • [7] ON UNIQUENESS OF THE SOLUTION OF THE CAUCHY-PROBLEM FOR ULTRAHYPERBOLIC EQUATION
    AMIROV, RK
    [J]. DOKLADY AKADEMII NAUK SSSR, 1990, 314 (06): : 1289 - 1290
  • [8] On uniqueness and stability of solution of the Cauchy problem for pseudoparabolic equation
    Amonov, BK
    Kobilov, SS
    [J]. ILL-POSED AND NON-CLASSICAL PROBLEMS OF MATHEMATICAL PHYSICS AND ANALYSIS, PROCEEDINGS, 2003, : 179 - 183
  • [9] Cohomological uniqueness of the Cauchy problem solutions for the Einstein equation
    Lychagin, Valentin
    Yumaguzhin, Valeriy
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (10) : 2099 - 2120
  • [10] On the Cauchy Problem For The Nonlinear Heat Equation
    Nikolova, Elena
    Tarulli, Mirko
    Venkov, George
    [J]. SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159