Uniqueness in the Cauchy Problem for the Hermite Heat Equation

被引:1
|
作者
Dhungana, Bishnu Prasad [1 ]
Hong Chengshao [2 ]
机构
[1] Tribhuvan Univ, Dept Math, Kathmandu, Nepal
[2] Harbin Inst Technol, Harbin 150006, Peoples R China
关键词
Hermite functions; Gelfand-shilov space; Mehler kernel; Hermite heat equation;
D O I
10.1007/s10773-014-2196-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the uniqueness of solutions to the Cauchy problem for the Hermite heat equation as follows: Let U(x, t) be a continuous function on R x [0, T] satisfying the following (i) (partial derivative/partial derivative t - partial derivative(2)/partial derivative x(2) + x(2))U(x, t) = 0 in R x (0, T), (ii) For every epsilon > 0, there exists a constant C := C(epsilon) > 0 and 0 < alpha < 1 such that sup(x) (is an element of R)vertical bar U(x, t)vertical bar <= C exp[(epsilon/t)(alpha)] for 0 < t < T, (iii) U(x, 0) = 0 for x is an element of R. Then U(x, t) = 0 in R x [0, T]. Also the condition 0 < alpha < 1 is optimal.
引用
收藏
页码:36 / 41
页数:6
相关论文
共 50 条