ArrayPipe: a flexible processing pipeline for microarray data

被引:66
|
作者
Hokamp, K
Roche, FM
Acab, M
Rousseau, ME
Kuo, B
Goode, D
Aeschliman, D
Bryan, J
Babiuk, LA
Hancock, REW
Brinkman, FSL [1 ]
机构
[1] Simon Fraser Univ, Dept Mol Biol & Biochem, Burnaby, BC V5A 1S6, Canada
[2] Inimex Pharmaceut Inc, Vancouver, BC, Canada
[3] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1W5, Canada
[4] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1W5, Canada
[5] VIDO, Saskatoon, SK, Canada
关键词
D O I
10.1093/nar/gkh446
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A number of microarray analysis software packages exist already; however, none combines the user-friendly features of a web-based interface with potential ability to analyse multiple arrays at once using flexible analysis steps. The ArrayPipe web server (freely available at www.pathogenomics.ca/arraypipe) allows the automated application of complex analyses to microarray data which can range from single slides to large data sets including replicates and dye-swaps. It handles output from most commonly used quantification software packages for dual-labelled arrays. Application features range from quality assessment of slides through various data visualizations to multi-step analyses including normalization, detection of differentially expressed genes, andcomparison and highlighting of gene lists. A highly customizable action set-up facilitates unrestricted arrangement of functions, which can be stored as action profiles. A unique combination of web-based and command-line functionality enables comfortable configuration of processes that can be repeatedly applied to large data sets in high throughput. The output consists of reports formatted as standard web pages and tab-delimited lists of calculated values that can be inserted into other analysis programs. Additional features, such as web-based spreadsheet functionality, auto-parallelization and password protection make this a powerful tool in microarray research for individuals and large groups alike.
引用
收藏
页码:W457 / W459
页数:3
相关论文
共 50 条
  • [21] Pipeline synchronization in data parallel processing
    张冠松
    李晓明
    Chinese Science Bulletin, 1996, (02) : 163 - 168
  • [22] The QUEST Data Processing Software Pipeline
    Andrews, Peter
    Baltay, Charles
    Bauer, Anne
    Ellman, Nancy
    Jerke, Jonathan
    Lauer, Rochelle
    Rabinowitz, David
    Silge, Julia
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2008, 120 (868) : 703 - 714
  • [23] Data processing pipeline for Herschel HIFI
    Shipman, R. F.
    Beaulieu, S. F.
    Teyssier, D.
    Morris, P.
    Rengel, M.
    McCoey, C.
    Edwards, K.
    Kester, D.
    Lorenzani, A.
    Coeur-Joly, O.
    Melchior, M.
    Xie, J.
    Sanchez, E.
    Zaal, P.
    Avruch, I.
    Borys, C.
    Braine, J.
    Comito, C.
    Delforge, B.
    Herpin, F.
    Hoac, A.
    Kwon, W.
    Lord, S. D.
    Marston, A.
    Mueller, M.
    Olberg, M.
    Ossenkopf, V.
    Puga, E.
    Akyilmaz-Yabaci, M.
    ASTRONOMY & ASTROPHYSICS, 2017, 608
  • [24] Pipeline processing of data in the VLT era
    Grosbol, P
    Banse, K
    Ballester, P
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS VIII, 1999, 172 : 151 - 154
  • [25] Pipeline synchronization in data parallel processing
    Zhang, GS
    Li, XM
    CHINESE SCIENCE BULLETIN, 1996, 41 (02): : 163 - 168
  • [26] The data processing pipeline for the MUSE instrument
    Weilbacher, Peter M.
    Palsa, Ralf
    Streicher, Ole
    Bacon, Roland
    Urrutia, Tanya
    Wisotzki, Lutz
    Conseil, Simon
    Husemann, Bernd
    Jarno, Aurelien
    Kelz, Andreas
    Pecontal-Rousset, Arlette
    Richard, Johan
    Roth, Martin M.
    Selman, Fernando
    Vernet, Joel
    ASTRONOMY & ASTROPHYSICS, 2020, 641
  • [27] Novel R Pipeline for Analyzing Biolog Phenotypic Microarray Data
    Vehkala, Minna
    Shubin, Mikhail
    Connor, Thomas R.
    Thomson, Nicholas R.
    Corander, Jukka
    PLOS ONE, 2015, 10 (03):
  • [28] FGDP: functional genomics data pipeline for automated, multiple microarray data analyses
    Grant, JD
    Somers, LA
    Zhang, Y
    Manion, FJ
    Bidaut, G
    Ochs, MF
    BIOINFORMATICS, 2004, 20 (02) : 282 - 283
  • [29] Developing a data pipeline solution for big data processing
    Lipovac, Ivona
    Babac, Marina Bagic
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2024, 16 (01) : 1 - 22
  • [30] Workflows for microarray data processing in the Kepler environment
    Stropp, Thomas
    McPhillips, Timothy
    Ludaescher, Bertram
    Bieda, Mark
    BMC BIOINFORMATICS, 2012, 13