Integrating the second near-infrared fluorescence imaging with clinical techniques for multimodal cancer imaging by neodymiumdoped gadolinium tungstate nanoparticles

被引:9
|
作者
Yu, Xujiang [1 ,2 ]
Aodenggerile [2 ]
Jiang, Zhao [3 ]
Shen, Jianliang [4 ,5 ]
Yan, Zhiqiang [1 ]
Li, Wanwan [3 ]
Qiu, Huibin [2 ]
机构
[1] Southern Med Univ, Shanghai Jiao Tong Univ, Joint Res Ctr Precis Med, Affiliated Fengxian Hosp,Affiliated Peoples Hosp, South Campus, Shanghai 201499, Peoples R China
[2] Shanghai Jiao Tong Univ, Frontiers Sci Ctr Transformat Mol, State Key Lab Met Matrix Composite, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[4] Wenzhou Med Univ, State Key Lab Ophthalmol Optometry & Vis Sci, Sch Ophthalmol & Optometry, Sch Biomed Engn, Wenzhou 325027, Peoples R China
[5] Univ Chinese Acad Sci, Engn Res Ctr Clin Funct Mat & Diag & Treatment De, Wenzhou Inst, Wenzhou 325001, Peoples R China
基金
中国国家自然科学基金;
关键词
rare-earth-doped nanoparticles (NPs); second near-infrared fluorescence; multimodal imaging; cancer; UP-CONVERSION; DOWNCONVERSION PHOTOLUMINESCENCE; CARBON NANOTUBES; FLUOROPHORES; NANOCRYSTALS; LUMINESCENCE; BURDEN; BREAST; WINDOW;
D O I
10.1007/s12274-020-3136-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Second near-infrared (NIR-II) fluorescence imaging is a recently emerged technique and is highly useful for accurate diagnosis of cancer. Although a diverse array of fluorescent nanomaterials have been developed to enable NIR-II fluorescence in various situations, they normally fail to unify the clinical techniques, such as computed tomography (CT) and magnetic resonance imaging (MRI). Therefore, exploiting multimodal agents to integrate the newly emerged NIR-II fluorescence and traditional clinical techniques would be of key significance. Here, we report a rational fabrication of neodymium (Nd)-doped gadolinium tungstate nanoparticles (NPs) that are subsequentially decorated with a hydrophilic layer and demonstrate that they can achieve the harmonious integration of NIR-II fluorescence imaging, CT, and MRI. The NIR-II fluorescence emission was activated by an incident light with discrete wavelength ranging from 250 to 810 nm. NIR-II fluorescence-CT-MRI associated trimodal imaging was subsequently demonstrated for breast cancer by an 808 nm laser, along with the estimation of NIR-II fluorescence imaging for cervical cancer. The integration of newly emerged and traditional clinical imaging techniques highlights the huge potential of rare-earth-doped NPs for multimodal imaging of different types of cancer.
引用
收藏
页码:2160 / 2170
页数:11
相关论文
共 50 条
  • [31] Near-infrared fluorescence optical imaging and tomography
    Gurfinkel, M
    Ke, S
    Wen, XX
    Li, C
    Sevick-Muraca, EM
    DISEASE MARKERS, 2003, 19 (2-3) : 107 - 121
  • [32] Discovery in translation: near-infrared fluorescence imaging
    Sevick-Muraca, Eva M.
    OPTICAL BIOPSY X, 2012, 8220
  • [33] Fluorescence Lifetime Imaging with Near-Infrared Dyes
    Becker, Wolfgang
    Shcheslavskiy, Vladislav
    MULTIPHOTON MICROSCOPY IN THE BIOMEDICAL SCIENCES XIII, 2013, 8588
  • [34] Lymphatic imaging in humans with near-infrared fluorescence
    Rasmussen, John C.
    Tan, I-Chih
    Marshall, Milton V.
    Fife, Caroline E.
    Sevick-Muraca, Eva M.
    CURRENT OPINION IN BIOTECHNOLOGY, 2009, 20 (01) : 74 - 82
  • [35] Near-Infrared Fluorescence Lymphatic Imaging in Lymphangiomatosis
    Rasmussen, John C.
    Fife, Caroline E.
    Sevick-Muraca, Eva M.
    LYMPHATIC RESEARCH AND BIOLOGY, 2015, 13 (03) : 195 - 201
  • [36] Molecular Imaging in the Second Near-Infrared Window
    Wan, Hao
    Du, Haotian
    Wang, Feifei
    Dai, Hongjie
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (25)
  • [37] Second Near-Infrared Window Fluorescence Materials for In Vivo Dynamic Multiplexed Imaging
    Fan, Fang
    Zeng, Keyun
    Zhu, Yingying
    Zhang, Yuxin
    Chen, Yu
    Lv, Diya
    Jia, Dan
    Chai, Yifeng
    Chen, Xiaofei
    Li, Quan
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [38] Clinical near-infrared spectroscopy and imaging
    Ferrari, Marco
    Culver, Joseph P.
    Hoshi, Yoko
    Wabnitz, Heidrun
    JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (09)
  • [39] Intravital confocal fluorescence lifetime imaging microscopy in the second near-infrared window
    Yu, Jia
    Zhang, Rongli
    Gao, Yufeng
    Sheng, Zonghai
    Gu, Min
    Sun, Qinchao
    Liao, Jiuling
    Wu, Ting
    Lin, Zhanyi
    Wu, Peiheng
    Kang, Lin
    Li, Hui
    Zhang, Labao
    Zheng, Wei
    OPTICS LETTERS, 2020, 45 (12) : 3305 - 3308
  • [40] Activatable Molecular Probes for Second Near-Infrared Fluorescence, Chemiluminescence, and Photoacoustic Imaging
    Huang, Jiaguo
    Pu, Kanyi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (29) : 11717 - 11731