BRAIN TUMOR DETECTION AND SEGMENTATION USING MULTISCALE INTUITIONISTIC FUZZY ROUGHNESS IN MR IMAGES

被引:3
|
作者
Dubey, Yogita [1 ]
Mushrif, Milind [1 ]
Mitra, Kajal [2 ]
机构
[1] Yeshwantrao Chavan Coll Engn, Dept Elect & Telecommun Engn, Nagpur 441110, Maharashtra, India
[2] NKP Salve Inst Med Sci & Res Ctr, Dept Radio Diag & Imaging Ctr, Nagpur, Maharashtra, India
关键词
Brain; Magnetic resonance; Tumor; Intuitionistic fuzzy set; Linear scale; Multiscale; Rough set; Roughness; Segmentation; C-MEANS ALGORITHM;
D O I
10.4015/S1016237219500200
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The magnetic resonance imaging technique is mostly used for visualizing and detecting brain tumor, which requires accurate segmentation of brain MR images into white matter, gray matter, cerebrospinal fluid, necrotic tissue, tumor, and edema. But brain image segmentation is a challenging task because of unknown noise and intensity inhomogeneity in brain MR images. This paper proposed a technique for the segmentation and the detection of a tumor, cystic component and edema in brain MR images using multiscale intuitionistic fuzzy roughness (MSIFR). Application of linear scale-space theory and intuitionistic fuzzy image representation deals with noise and intensity inhomogeneity in brain MR images. Intuitionistic fuzzy roughness calculated at proper scale is used to find optimum valley points for segmentation of brain MR images. The algorithm is applied to the real brain MR images from various hospitals and also to the benchmark set of the synthetic MR images from brainweb. The algorithm segments synthetic brain MR image into three regions, gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) and also separates tumor, cystic component and edema accurately in real brain MR images. The results of segmentation of proposed algorithm for synthetic images are compared with nonlocal fuzzy c-means (NLFCM), rough set based algorithms, intervalued possibilistic fuzzy c-means (IPFCM), robust modified Gaussian mixture model with rough set (RMGMMRS) and three algorithms, recursive bias corrected possibilistic fuzzy c-means (RBCPFCM), recursive bias corrected possibilistic neighborhood fuzzy c-means (RBCPNFCM) and recursive bias corrected separately weighted possibilistic neighborhood fuzzy c-means (RBCSPNFCM). The quantitative and qualitative evaluation demonstrates the superiority of the proposed algorithm.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Intuitionistic Fuzzy Roughness Measure for Segmentation of Brain MR Images
    Dubey, Yogita K.
    Mushrif, Milind M.
    2015 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2015, : 49 - +
  • [2] Segmentation of MR Brain Images for Tumor Extraction Using Fuzzy
    Vishnuvarthanan, Govindaraj
    Rajasekaran, Murugan Pallikonda
    CURRENT MEDICAL IMAGING, 2013, 9 (01) : 2 - 6
  • [3] Multiscale Intuitionistic Fuzzy Roughness Measure for Image Segmentation
    Nehare, Prajakta. R.
    Dubey, Yogita. K.
    Mushrif, Milind. M.
    2014 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND SIGNAL PROCESSING (ICCSP), 2014,
  • [4] Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images
    He Deng
    Wankai Deng
    Xianping Sun
    Chaohui Ye
    Xin Zhou
    Scientific Reports, 6
  • [5] Segmentation of brain MR images using rough set based, intuitionistic fuzzy clustering
    Dubey, Yogita K.
    Mushrif, Miind M.
    Mitra, Kajal
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2016, 36 (02) : 413 - 426
  • [6] Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images
    Deng, He
    Deng, Wankai
    Sun, Xianping
    Ye, Chaohui
    Zhou, Xin
    SCIENTIFIC REPORTS, 2016, 6
  • [7] Enhancement of Brain Tumor MR Images based on Intuitionistic Fuzzy Sets
    Deng, Wankai
    Deng, He
    Cheng, Lifang
    MIPPR 2015: PARALLEL PROCESSING OF IMAGES AND OPTIMIZATION; AND MEDICAL IMAGING PROCESSING, 2015, 9814
  • [8] Brain Tumor Detection and Segmentation in MR Images Using Deep Learning
    Sajid, Sidra
    Hussain, Saddam
    Sarwar, Amna
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (11) : 9249 - 9261
  • [9] Brain Tumor Detection and Segmentation in MR Images Using Deep Learning
    Sidra Sajid
    Saddam Hussain
    Amna Sarwar
    Arabian Journal for Science and Engineering, 2019, 44 : 9249 - 9261
  • [10] A hybrid weighted fuzzy approach for brain tumor segmentation using MR images
    Prabhjot Kaur Chahal
    Shreelekha Pandey
    Neural Computing and Applications, 2023, 35 : 23877 - 23891