A review of the handling of missing longitudinal outcome data in clinical trials

被引:58
|
作者
Powney, Matthew [1 ]
Williamson, Paula [1 ]
Kirkham, Jamie [1 ]
Kolamunnage-Dona, Ruwanthi [1 ]
机构
[1] Univ Liverpool, Inst Translat Med, Liverpool L69 3GS, Merseyside, England
关键词
Review; Missing; Data; Handling; Longitudinal; Repeated; Measures;
D O I
10.1186/1745-6215-15-237
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The aim of this review was to establish the frequency with which trials take into account missingness, and to discover what methods trialists use for adjustment in randomised controlled trials with longitudinal measurements. Failing to address the problems that can arise from missing outcome data can result in misleading conclusions. Missing data should be addressed as a means of a sensitivity analysis of the complete case analysis results. One hundred publications of randomised controlled trials with longitudinal measurements were selected randomly from trial publications from the years 2005 to 2012. Information was extracted from these trials, including whether reasons for dropout were reported, what methods were used for handing the missing data, whether there was any explanation of the methods for missing data handling, and whether a statistician was involved in the analysis. The main focus of the review was on missing data post dropout rather than missing interim data. Of all the papers in the study, 9 (9%) had no missing data. More than half of the papers included in the study failed to make any attempt to explain the reasons for their choice of missing data handling method. Of the papers with clear missing data handling methods, 44 papers (50%) used adequate methods of missing data handling, whereas 30 (34%) of the papers used missing data methods which may not have been appropriate. In the remaining 17 papers (19%), it was difficult to assess the validity of the methods used. An imputation method was used in 18 papers (20%). Multiple imputation methods were introduced in 1987 and are an efficient way of accounting for missing data in general, and yet only 4 papers used these methods. Out of the 18 papers which used imputation, only 7 displayed the results as a sensitivity analysis of the complete case analysis results. 61% of the papers that used an imputation explained the reasons for their chosen method. Just under a third of the papers made no reference to reasons for missing outcome data. There was little consistency in reporting of missing data within longitudinal trials.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The methods for handling missing data in clinical trials influence sample size requirements
    Auleley, GR
    Giraudeau, B
    Baron, G
    Maillefert, JF
    Dougados, M
    Ravaud, P
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2004, 57 (05) : 447 - 453
  • [32] Handling missing quality of life data in HIV clinical trials: what is practical?
    Diane L. Fairclough
    Herbert Thijs
    I-Chan Huang
    Henrik W. Finnern
    Albert W. Wu
    [J]. Quality of Life Research, 2008, 17 : 61 - 73
  • [33] Handling of missing data in long-term clinical trials: a case study
    Janssens, Mark
    Molenberghs, Geert
    Kerstens, Rene
    [J]. PHARMACEUTICAL STATISTICS, 2012, 11 (06) : 442 - 448
  • [34] Statistical analysis and handling of missing data in cluster randomized trials: a systematic review
    Mallorie H. Fiero
    Shuang Huang
    Eyal Oren
    Melanie L. Bell
    [J]. Trials, 17
  • [35] Statistical analysis and handling of missing data in cluster randomized trials: a systematic review
    Fiero, Mallorie H.
    Huang, Shuang
    Oren, Eyal
    Bell, Melanie L.
    [J]. TRIALS, 2016, 17
  • [36] Missing data handling in non-inferiority and equivalence trials: A systematic review
    Rabe, Brooke A.
    Day, Simon
    Fiero, Mallorie H.
    Bell, Melanie L.
    [J]. PHARMACEUTICAL STATISTICS, 2018, 17 (05) : 477 - 488
  • [37] Assessing and interpreting treatment effects in longitudinal clinical trials with missing data
    Mallinckrodt, CH
    Sanger, TM
    Dubé, S
    DeBrota, DJ
    Molenberghs, G
    Carroll, RJ
    Potter, WZ
    Tollefson, GD
    [J]. BIOLOGICAL PSYCHIATRY, 2003, 53 (08) : 754 - 760
  • [38] Missing Data in Longitudinal Clinical Trials Part A: Design and Conceptual Issues
    Lavori, Philip W.
    Brown, C. Hendricks
    Duan, Naihua
    Gibbons, Robert D.
    Greenhouse, Joel
    [J]. PSYCHIATRIC ANNALS, 2008, 38 (12) : 784 - 792
  • [39] A modelling strategy for the analysis of clinical trials with partly missing longitudinal data
    White, IR
    Moodie, E
    Thompson, SG
    Croudace, T
    [J]. INTERNATIONAL JOURNAL OF METHODS IN PSYCHIATRIC RESEARCH, 2003, 12 (03) : 139 - 150
  • [40] Multiple imputation for handling missing outcome data in randomized trials involving a mixture of independent and paired data
    Sullivan, Thomas R.
    Yelland, Lisa N.
    Moreno-Betancur, Margarita
    Lee, Katherine J.
    [J]. STATISTICS IN MEDICINE, 2021, 40 (27) : 6008 - 6020