Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction

被引:5
|
作者
Zhang, Yu [1 ]
Hu, Sanbao [2 ]
Zhang, Yunqing [3 ]
Chen, Liping [3 ]
机构
[1] Wuhan Second Ship Design & Res Inst, Wuhan 430064, Hubei, Peoples R China
[2] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automobile Parts, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Ctr Comp Aided Design, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
SIMULATION; VIBRATION; FLOW; APPROXIMATION; IMPELLER; DESIGN; MODELS;
D O I
10.1155/2014/131802
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Optimization with nonstationary, nonlinear monolithic fluid-structure interaction
    Wick, Thomas
    Wollner, Winnifried
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (19) : 5430 - 5449
  • [42] Seismic Response Analysis of Large Liquid Storage Tank Considering Fluid-Structure Interaction
    Zhang, Lingxin
    Tan, Xiaojing
    Liu, Jieping
    Zhong, Jiangrong
    ADVANCES IN CIVIL ENGINEERING AND ARCHITECTURE INNOVATION, PTS 1-6, 2012, 368-373 : 983 - 987
  • [43] Stochastic dynamic analysis of marine risers considering fluid-structure interaction and system uncertainties
    Ni, Pinghe
    Li, Jun
    Hao, Hong
    Xia, Yong
    Du, Xiuli
    ENGINEERING STRUCTURES, 2019, 198
  • [44] Fluid-structure interaction analysis of fluid pressure pulsation and structural vibration features in a vertical axial pump
    Zhang, Liaojun
    Wang, Shuo
    Yin, Guojiang
    Guan, Chaonian
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (03)
  • [45] Fluid-structure interaction analysis of hemodynamics in different degrees of stenoses considering microcirculation function
    He, Fan
    Hua, Lu
    Guo, Tingting
    ADVANCES IN MECHANICAL ENGINEERING, 2021, 13 (01)
  • [46] A Dynamic Analysis Method of Liquid-Filled Containers Considering the Fluid-Structure Interaction
    Fang, Xibing
    Bao, Xin
    Yue, Fengjiang
    Zhao, Qiyuan
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [47] An Optimization of a Turbocharger Blade Based on Fluid-Structure Interaction
    Li, Minghai
    Li, Yuanzhe
    Jiang, Feng
    Hu, Jie
    PROCESSES, 2022, 10 (08)
  • [48] Vibration fatigue analysis of liquid-filled pipelines considering fluid-structure interaction
    Jiang, Yu
    Tao, Junyong
    Zhu, Lei
    ADVANCES IN ENGINEERING MATERIALS, STRUCTURES AND SYSTEMS: INNOVATIONS, MECHANICS AND APPLICATIONS, 2019, : 735 - 740
  • [49] Dynamic Response Analysis of Tilting Pad Journal Bearing Considering Fluid-Structure Interaction
    Li, Q.
    Tang, X. H.
    Zhang, S.
    Wang, Y. J.
    Xu, W. W.
    Wang, Z. B.
    JOURNAL OF APPLIED FLUID MECHANICS, 2021, 14 (06) : 1827 - 1837
  • [50] Free Vibration Analysis of Hydraulic Quick Couplings Considering Fluid-Structure Interaction Characteristics
    Liu, Yuchao
    Ma, Fei
    Geng, Xiaoguang
    Wang, Songyuan
    Zhou, Zhihong
    Jin, Chun
    ACTUATORS, 2024, 13 (12)