Tunable band gaps in silicene-MoS2 heterobilayers

被引:121
|
作者
Gao, N.
Li, J. C. [1 ]
Jiang, Q.
机构
[1] Jilin Univ, Minist Educ, Key Lab Automobile Mat, Changchun 130022, Peoples R China
关键词
MONOLAYER; GRAPHENE; MOLECULES; SILICON;
D O I
10.1039/c4cp00089g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The geometric and electronic properties of silicene paired with a MoS2 substrate are studied systematically by using density functional theory with van der Waals corrections. It is found that the nearly linear band dispersions can be preserved in the heterobilayers due to the weak interface interactions. Meanwhile, the band gap is opened because of the sublattice symmetry broken by the intrinsic interface dipole. Moreover, the band gap values could be effectively modulated under an external electric field. Therefore, a way is paved for silicene-MoS2 heterobilayers to be candidate materials for logic circuits and photonic devices.
引用
收藏
页码:11673 / 11678
页数:6
相关论文
共 50 条
  • [21] 2-Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1-x)Se2x Monolayers
    Mann, John
    Ma, Quan
    Odenthal, Patrick M.
    Isarraraz, Miguel
    Le, Duy
    Preciado, Edwin
    Barroso, David
    Yamaguchi, Koichi
    Palacio, Gretel von Son
    Andrew Nguyen
    Tai Tran
    Wurch, Michelle
    Ariana Nguyen
    Klee, Velveth
    Bobek, Sarah
    Sun, Dezheng
    Heinz, Tony F.
    Rahman, Talat S.
    Kawakami, Roland
    Bartels, Ludwig
    ADVANCED MATERIALS, 2014, 26 (09) : 1399 - 1404
  • [22] Tunable Electrical Bragg band gaps in piezoelectric plates
    Vasseur, Clement
    Croenne, Charles
    Vasseur, Jerome
    Dubus, Bertrand
    Prevot, Claude
    Mai Pham Thi
    Hladky-Hennion, Anne-Christine
    2017 11TH INTERNATIONAL CONGRESS ON ENGINEERED MATERIALS PLATFORMS FOR NOVEL WAVE PHENOMENA (METAMATERIALS), 2017, : 145 - 147
  • [23] Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps
    Pan, Daocheng
    Wang, Xiaolei
    Zhou, Z. Hong
    Chen, Wei
    Xu, Chuanlai
    Lu, Yunfeng
    CHEMISTRY OF MATERIALS, 2009, 21 (12) : 2489 - 2493
  • [24] Tunable Bragg band gaps in piezocomposite phononic crystals
    Croenne, Charles
    Ponge, Marie-Fraise
    Hladky-Hennion, Anne-Christine
    Mai Pham Thi
    Levassort, Franck
    Haumesser, Lionel
    2015 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2015,
  • [25] Tunable photonic band gaps in a photonic crystal fiber
    Sun, J.
    Chan, C. C.
    Dong, X. Y.
    Shum, P.
    PHOTONIC APPLICATIONS FOR AEROSPACE, TRANSPORTATION, AND HARSH ENVIRONMENTS, 2006, 6379
  • [26] Thermally tunable band gaps in architected metamaterial structures
    Nimmagadda, Chaitanya
    Matlack, Kathryn H.
    JOURNAL OF SOUND AND VIBRATION, 2019, 439 : 29 - 42
  • [27] Amorphous copper tungsten oxide with tunable band gaps
    Chen, Le
    Shet, Sudhakar
    Tang, Houwen
    Ahn, Kwang-soon
    Wang, Heli
    Yan, Yanfa
    Turner, John
    Al-Jassim, Mowafak
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (04)
  • [28] Three dimensional graphdiyne polymers with tunable band gaps
    Hu, Meng
    Pan, Yilong
    Luo, Kun
    He, Julong
    Yu, Dongli
    Xu, Bo
    CARBON, 2015, 91 : 518 - 526
  • [29] Alloyed semiconductor nanocrystals with broad tunable band gaps
    Pan, Daocheng
    Weng, Ding
    Wang, Xiaolei
    Xiao, Qiangfeng
    Chen, Wei
    Xu, Chuanlai
    Yang, Zhengzhong
    Lu, Yunfeng
    CHEMICAL COMMUNICATIONS, 2009, (28) : 4221 - 4223
  • [30] An electric field tunable energy band gap at silicene/(0001) ZnS interfaces
    Houssa, M.
    van den Broek, B.
    Scalise, E.
    Pourtois, G.
    Afanas'ev, V. V.
    Stesmans, A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (11) : 3702 - 3705