Deriving the Lorentz Force Equation from Maxwell's equations

被引:0
|
作者
Houser, WP [1 ]
机构
[1] Bristol Myers Squibb Co, Evansville, IN USA
关键词
electromagnetics; Maxwell's equations; Faraday's law; Lorentz force equation; derivation; instruction;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A derivation of the Lorentz Force Equation is presented here based on one of Maxwell's Equations, Faraday's Law. The presentation is intended to be understand able by those who have no recently studied electromagnetism.
引用
收藏
页码:422 / 425
页数:4
相关论文
共 50 条
  • [41] Finite energy scattering for the Lorentz-Maxwell equation
    Germain, Pierre
    ANNALES HENRI POINCARE, 2008, 9 (05): : 927 - 943
  • [42] ON EXACT-SOLUTIONS OF THE LORENTZ-MAXWELL EQUATION
    FUSHCHICH, VI
    REVENKO, IV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1989, (06): : 27 - 31
  • [43] Stochastic Maxwell-Lorentz equation in radiation damping
    Petrosky, T
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 98 (02) : 103 - 111
  • [44] Eikonal equation of the Lorentz-violating Maxwell theory
    Zhi Xiao
    Lijing Shao
    Bo-Qiang Ma
    The European Physical Journal C, 2010, 70 : 1153 - 1164
  • [45] Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies
    Zhao, JS
    Chew, WC
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2000, 48 (10) : 1635 - 1645
  • [46] Particle-Like Solution of the Maxwell–Lorentz Equations
    T. V. Lasukova
    V. V. Lasukov
    M. O. Abdrashitova
    Russian Physics Journal, 2017, 60 : 776 - 781
  • [47] Lorentz Transformation in Maxwell Equations for Slowly Moving Media
    Sheng, Xin-Li
    Li, Yang
    Pu, Shi
    Wang, Qun
    SYMMETRY-BASEL, 2022, 14 (08):
  • [48] Maxwell's equations as the one-photon quantum equation
    Gersten, A
    FOUNDATIONS OF PHYSICS LETTERS, 1999, 12 (03) : 291 - 298
  • [49] RELATIVISTIC DERIVATION OF MAXWELL-LORENTZ EQUATIONS FOR MEDIA
    CHELNOKOV, MB
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1983, 26 (12): : 71 - 75
  • [50] Soliton states of Maxwell's equations and nonlinear Schrodinger equation
    Chen, YQ
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 1997, 40 (10): : 1073 - 1081