Complexity of the 2009 L'Aquila earthquake causative fault system (Abruzzi Apennines, Italy) and effects on the Middle Aterno Quaternary basin arrangement
被引:9
|
作者:
Pucci, S.
论文数: 0引用数: 0
h-index: 0
机构:
Ist Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, ItalyIst Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, Italy
机构:
Dipartimento Fis Astron Univ, PH3DRA Labs, Via Santa Sofia 64, I-95123 Catania, Italy
INFN CT, Via Santa Sofia 64, I-95123 Catania, ItalyIst Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, Italy
Gueli, A.
[5
,6
]
Stella, G.
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento Fis Astron Univ, PH3DRA Labs, Via Santa Sofia 64, I-95123 Catania, Italy
INFN CT, Via Santa Sofia 64, I-95123 Catania, ItalyIst Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, Italy
Stella, G.
[5
,6
]
Baccheschi, P.
论文数: 0引用数: 0
h-index: 0
机构:
Ist Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, ItalyIst Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, Italy
Baccheschi, P.
[1
]
Pantosti, D.
论文数: 0引用数: 0
h-index: 0
机构:
Ist Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, ItalyIst Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, Italy
Pantosti, D.
[1
]
机构:
[1] Ist Nazl Geofis & Vulcanol, Via Vigna Murata 605, I-00143 Rome, Italy
Quaternary extensional basin;
Continental stratigraphy;
Alluvial fan;
Earthquake;
Central apennines;
Active tectonics;
CENTRAL-NORTHERN APENNINES;
ACTIVE NORMAL-FAULT;
W;
6.3;
EARTHQUAKE;
PAGANICA FAULT;
MOMENT TENSORS;
ALLUVIAL FANS;
POSTSEISMIC SLIP;
QUARTZ OSL;
AREA;
LUMINESCENCE;
D O I:
10.1016/j.quascirev.2019.04.014
中图分类号:
P9 [自然地理学];
学科分类号:
0705 ;
070501 ;
摘要:
An Mw 6.1, devastating earthquake, on April 6, 2009, struck the Middle Aterno Valley (Abruzzi Apennines, Italy) due to the activation of a poorly known normal fault system. Structural analysis of the fault population and investigation of the relationships with the Quaternary continental deposits through integrated field and laboratory techniques were conducted in order to reconstruct the long-term, tectono-sedimentary evolution of the basin and hypothesize the size of the fault segment. A polyphasic evolution of the Middle Aterno Valley is characterized by a conjugate, similar to E-W and similar to N S-striking fault system, during the early stage of basin development, and by a dip-slip, NW-striking fault system in a later phase. The old conjugate fault system controlled the generation of the largest sedimentary traps in the area and is responsible for the horst and graben structures within the basin. During the Early Pleistocene the E-W and N-S system reactivated with dip-slip kinematics. This gave rise to intra-basin bedrock highs and a significant syn-tectonic deposition, causing variable thickness and hiatuses of the continental infill. Subsequently, since the end of the Early Pleistocene, with the inception of the NW-striking fault system, several NW-strands linked into longer splays and their activity migrated toward a leading segment affecting the Paganica-San Demetrio basin: the Paganica-San Demetrio fault alignment. The findings from this work constrain and are consistent with the subsurface basin geometry inferred from previous geophysical investigations. Notably, two major elements of the similar to E-W and similar to N S-striking faults likely act as transfer to the nearby stepping active fault systems or form the boundaries, as geometric complexities, that limit the Paganica-San Demetrio fault segment overall length to 19 1-3 km. The resulting size of the leading fault segment is coherent with the extent of the 6 April 2009 L'Aquila earthquake causative fault. The positive match between the geologic long-term and coseismic images of the 2009 seismogenic fault highlights that the comprehensive reconstruction of the deformation history offers a unique contribution to the understanding faults seismic potential. (C) 2019 Elsevier Ltd. All rights reserved.