Monomorphous decomposition method and its application for phase retrieval and phase-contrast tomography

被引:6
|
作者
Gureyev, T. E. [1 ,2 ,3 ,4 ]
Nesterets, Ya. I. [2 ]
Paganin, D. M. [3 ]
机构
[1] Univ Melbourne, Sch Phys, ARC Ctr Excellence Adv Mol Imaging, Parkville, Vic 3010, Australia
[2] Univ New England, Sch Sci & Technol, Armidale, NSW 2351, Australia
[3] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
[4] CSIRO, Clayton, Vic 3168, Australia
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 05期
关键词
OF-INTENSITY EQUATION; LINEAR ALGORITHMS; TRANSPORT; RESOLUTION; RECONSTRUCTION; IMAGE;
D O I
10.1103/PhysRevA.92.053860
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that an arbitrary spatial distribution of complex refractive index decrement inside an object can be exactly represented as a sum of two "monomorphous" complex distributions, i.e., distributions with the ratios of the real part to the imaginary part being constant throughout the object. A priori knowledge of constituent materials can be used to estimate the global lower and upper boundaries for this ratio. This "monomorphous decomposition" approach can be viewed as an extension of the successful phase-retrieval method, based on the transport of intensity equation, that was previously developed for monomorphous (homogeneous) objects, such as, e.g., objects consisting of a single material. We demonstrate that the monomorphous decomposition can lead to more stable methods for phase retrieval using the transport of intensity equation. Such methods may find application in quantitative in-line phase-contrast imaging and phase-contrast tomography.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Revisiting Neutron Propagation-Based Phase-Contrast Imaging and Tomography: Use of Phase Retrieval to Amplify the Effective Degree of Brilliance
    Paganin, David M.
    Sales, Morten
    Kadletz, Peter M.
    Kockelmann, Winfried
    Beltran, Mario A.
    Poulsen, Henning F.
    Schmidt, Soren
    PHYSICAL REVIEW APPLIED, 2023, 19 (03)
  • [42] A Novel Anisotropic Fast Marching Method and its Application to Blood Flow Computation in Phase-contrast MRI
    Schwenke, M.
    Hennemuth, A.
    Fischer, B.
    Friman, O.
    METHODS OF INFORMATION IN MEDICINE, 2012, 51 (05) : 423 - 428
  • [43] X-ray phase-contrast method and its application to the study of blood vessels with a model object
    A. P. Petrakov
    Technical Physics, 2003, 48 : 607 - 611
  • [44] X-ray phase-contrast method and its application to the study of blood vessels with a model object
    Petrakov, AP
    TECHNICAL PHYSICS, 2003, 48 (05) : 607 - 611
  • [45] Adaptive weighted total variation regularized phase retrieval in differential phase-contrast imaging
    Wang, Yan
    Huang, Wanxia
    He, Qili
    Zhu, Zhongzhu
    Zhang, Jin
    Yuan, Qinxi
    Zhang, Kai
    Zhu, Peiping
    OPTICAL ENGINEERING, 2018, 57 (05)
  • [46] Polychromatic neutron phase-contrast imaging of weakly absorbing samples enabled by phase retrieval
    Ostergaard, Maja
    Naver, Estrid Buhl
    Kaestner, Anders
    Willendrup, Peter K.
    Bruel, Annemarie
    Sorensen, Henning Osholm
    Thomsen, Jesper Skovhus
    Schmidt, Soren
    Poulsen, Henning Friis
    Kuhn, Luise Theil
    Birkedal, Henrik
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2023, 56 (03) : 673 - 682
  • [47] Three-dimensional phase retrieval in propagation-based phase-contrast imaging
    Ruhlandt, A.
    Krenkel, M.
    Bartels, M.
    Salditt, T.
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [48] PHASE-CONTRAST MICROSCOPY
    不详
    LANCET, 1946, 251 (DEC7): : 838 - 838
  • [49] PHASE-CONTRAST HOLOGRAMS
    ROGERS, GL
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1965, 55 (09) : 1181 - +
  • [50] Phase-contrast radiography
    Gao, DC
    Pogany, A
    Stevenson, AW
    Wilkins, SW
    RADIOGRAPHICS, 1998, 18 (05) : 1257 - 1267