Dynamics of a class of ants on a one-dimensional lattice

被引:3
|
作者
Gajardo, A
Goles, E
机构
[1] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[3] Univ Chile, Dept Ingn Matemat, Santiago, Chile
关键词
Langton's Ant; lattice gas; discrete dynamical systems; small Turing machines;
D O I
10.1016/j.tcs.2004.03.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A one-dimensional virtual ant is an automaton evolving in the lattice Z. Each cell of Z may have white or black color. The ant, represented by an arrow in a cell, moves to a neighbor and may change the color of the current cell depending on its previous color. In this paper we characterize into classes the dynamics of 64 ant's rules, taking into account bounded or unbounded evolution as well as the periods and the steady-state behavior. We describe in a detailed way the behavior of each of the rules, determining the steady state velocity, period and transient time. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:267 / 283
页数:17
相关论文
共 50 条
  • [41] When is a one-dimensional lattice small?
    Lin, CY
    Cho, SN
    Goedde, CG
    Lichter, S
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (02) : 259 - 262
  • [42] CONDENSATION OF A ONE-DIMENSIONAL LATTICE GAS
    JOHANSSON, K
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 141 (01) : 41 - 61
  • [43] A ONE-DIMENSIONAL MODEL OF TRAIL PROPAGATION BY ARMY ANTS
    WATMOUGH, J
    EDELSTEINKESHET, L
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1995, 33 (05) : 459 - 476
  • [44] CLUSTER DISTRIBUTIONS ON A ONE-DIMENSIONAL LATTICE
    RAWLINGS, PK
    SCHNEIDER, FW
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1969, 50 (09): : 3707 - +
  • [45] POLARONS ON A ONE-DIMENSIONAL NONLINEAR LATTICE
    ZOLOTARYUK, AV
    MISTRIOTIS, A
    ECONOMOU, EN
    [J]. PHYSICAL REVIEW B, 1993, 48 (18): : 13518 - 13523
  • [46] LATTICE DECORATIONS AND ONE-DIMENSIONAL PERCOLATION
    ORD, G
    WHITTINGTON, SG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (15): : L947 - L950
  • [47] VIBRATIONS OF A ONE-DIMENSIONAL DEFECT LATTICE
    KESAVASAMY, K
    KRISHNAMURTHY, N
    [J]. AMERICAN JOURNAL OF PHYSICS, 1979, 47 (11) : 968 - 973
  • [48] Renormalization in one-dimensional dynamics
    De Melo, W.
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (08) : 1185 - 1197
  • [49] One-Dimensional Microstructure Dynamics
    Berezovski, Arkadi
    Engelbrecht, Jueri
    Maugin, Gerard A.
    [J]. MECHANICS OF MICROSTRUCTURED SOLIDS: CELLULAR MATERIALS, FIBRE REINFORCED SOLIDS AND SOFT TISSUES, 2009, 46 : 21 - +
  • [50] Renormalization in one-dimensional dynamics
    Skripchenko, A. S.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (06) : 983 - 1021