Dynamics of a class of ants on a one-dimensional lattice

被引:3
|
作者
Gajardo, A
Goles, E
机构
[1] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[3] Univ Chile, Dept Ingn Matemat, Santiago, Chile
关键词
Langton's Ant; lattice gas; discrete dynamical systems; small Turing machines;
D O I
10.1016/j.tcs.2004.03.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A one-dimensional virtual ant is an automaton evolving in the lattice Z. Each cell of Z may have white or black color. The ant, represented by an arrow in a cell, moves to a neighbor and may change the color of the current cell depending on its previous color. In this paper we characterize into classes the dynamics of 64 ant's rules, taking into account bounded or unbounded evolution as well as the periods and the steady-state behavior. We describe in a detailed way the behavior of each of the rules, determining the steady state velocity, period and transient time. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:267 / 283
页数:17
相关论文
共 50 条
  • [1] Dynamics of an impurity in a one-dimensional lattice
    Massel, F.
    Kantian, A.
    Daley, A. J.
    Giamarchi, T.
    Torma, P.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [2] Controlling one-dimensional Langevin dynamics on the lattice
    Bettencourt, LMA
    Habib, S
    Lythe, G
    [J]. PHYSICAL REVIEW D, 1999, 60 (10)
  • [3] One-dimensional dynamics of lattice thermal transport
    Frizzera, W
    Viliani, G
    Montagna, M
    Monteil, A
    Capobianco, JA
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (49) : 10867 - 10879
  • [4] Dynamics of quantum droplets in a one-dimensional optical lattice
    Zhou, Zheng
    Yu, Xi
    Zou, Yu
    Zhong, Honghua
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 78
  • [5] QUANTUM DYNAMICS OF HYDROGEN DIFFUSION IN A ONE-DIMENSIONAL LATTICE
    KANEKO, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (01) : 200 - 204
  • [6] ENERGY DYNAMICS IN A ONE-DIMENSIONAL APERIODIC ANHARMONIC LATTICE
    Dos Santos, C. A. A.
    Assuncao, T. F.
    Lyra, M. L.
    De Moura, F. A. B. F.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (08):
  • [7] THE RESIDUAL ENTROPY FOR A CLASS OF ONE-DIMENSIONAL CLASSICAL LATTICE MODELS
    SLEGERS, L
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (17): : 3489 - 3500
  • [8] NONLINEAR DYNAMICS OF LOCALIZATION IN A CLASS OF ONE-DIMENSIONAL QUASICRYSTALS
    HOLZER, M
    [J]. PHYSICAL REVIEW B, 1988, 38 (08): : 5756 - 5759
  • [9] Self-trapping dynamics of excitons on a one-dimensional lattice
    Ishida, K
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 102 (04): : 483 - 491
  • [10] Delocalization and energy dynamics in a one-dimensional disordered nonlinear lattice
    dos Santos, I. F. F.
    Sales, M. O.
    Ranciaro Neto, A.
    de Moura, F. A. B. F.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 560