Elliptic systems with various growth

被引:0
|
作者
Boccardo, L [1 ]
Fleckinger-Pelle, J [1 ]
de Thelin, F [1 ]
机构
[1] Univ Rome 1, Dipartimento Matemat, I-00185 Rome, ITALY
来源
REACTION DIFFUSION SYSTEMS | 1998年 / 194卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:59 / 66
页数:4
相关论文
共 50 条
  • [41] Existence and nonexistence results for critical growth fractional elliptic systems
    Gao, Fengshuang
    Guo, Yuxia
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (01):
  • [42] Existence of solutions of sublinear elliptic systems with quadratic growth in the gradient
    Mohamed Benrhouma
    Nonlinear Differential Equations and Applications NoDEA, 2014, 21 : 737 - 749
  • [43] LOCAL REGULARITY FOR ELLIPTIC SYSTEMS WITH p, q-GROWTH
    Cupini, Giovanni
    Mascolo, Elvira
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2015, 1 : 15 - 38
  • [44] Boundary regularity for elliptic systems under a natural growth condition
    Lisa Beck
    Annali di Matematica Pura ed Applicata, 2011, 190 : 553 - 588
  • [45] Boundary regularity for elliptic systems with p, q-growth
    Boegelein, Verena
    Duzaar, Frank
    Marcellini, Paolo
    Scheven, Christoph
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 159 : 250 - 293
  • [46] Weak solutions for elliptic systems with variable growth in Clifford analysis
    Fu, Yongqiang
    Zhang, Binlin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 643 - 670
  • [47] Concentration phenomena in weakly coupled elliptic systems with critical growth*
    Riccardo Molle
    Angela Pistoia
    Bulletin of the Brazilian Mathematical Society, 2004, 35 : 395 - 418
  • [48] Existence of solutions of sublinear elliptic systems with quadratic growth in the gradient
    Benrhouma, Mohamed
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (05): : 737 - 749
  • [49] Elliptic systems
    Dain, S
    Analytical and Numerical Approaches to Mathematical Relativity, 2006, 692 : 117 - 139
  • [50] Elliptic Systems
    Froehlich, Steffen
    COULOMB FRAMES IN THE NORMAL BUNDLE OF SURFACES IN EUCLIDEAN SPACES: TOPICS FROM DIFFERENTIAL GEOMETRY AND GEOMETRIC ANALYSIS OF SURFACES, 2012, 2053 : 31 - 52