Temperature-dependent AC conductivity and dielectric and impedance properties of ternary In-Te-Se nanocomposite thin films

被引:37
|
作者
Mannu, Pandian [1 ]
Palanisamy, Matheswaran [1 ]
Bangaru, Gokul [1 ]
Ramakrishnan, Sathyamoorthy [1 ]
Kandasami, Asokan [2 ]
Kumar, Pawan [3 ]
机构
[1] Kongunadu Arts & Sci Coll, Dept Phys, Coimbatore 641029, Tamil Nadu, India
[2] Inter Univ Accelerator Ctr, Mat Sci Div, New Delhi 110067, India
[3] Govt Coll, Dept Phys, Bhiwani 127021, Haryana, India
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2019年 / 125卷 / 07期
关键词
OPTICAL-PROPERTIES; ALUMINUM-OXIDE; RELAXATION; SPECTROSCOPY; MECHANISMS; HETEROJUNCTION; CAPACITANCE; MODULUS; ZN; CD;
D O I
10.1007/s00339-019-2751-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The temperature- and frequency-dependent AC conductivity and dielectric and impedance properties of thermally evaporated ternary In-Te-Se nanocomposite thin films were measured in the temperature range from 100 to 300K with the frequency range of 20kHz-2MHz. The measured dielectric constant (epsilon), loss tangent (tan), and the ac electrical conductivity (sigma(ac)) values are considerably sensitive to the frequency and temperature. The variations in epsilon, epsilon and tan characteristics confirm the interfacial polarization. The values of C and epsilon decrease with frequency, while sigma(ac) increases with both temperature and frequency. The estimated activation energy is found to decrease with increase in temperature. Further, the frequency dependence real (Z) and imaginary parts (Z) of the impedance spectra of the sample depend on the dielectric relaxation process. The Nyquist plot shows that the radius of the semicircular arc decreases with temperature and reveals a temperature-dependent relaxation process. The mechanism responsible for thermally assisted AC conduction can be due to the electronic hopping of charge carriers.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Temperature-dependent AC conductivity and dielectric and impedance properties of ternary In–Te–Se nanocomposite thin films
    Pandian Mannu
    Matheswaran Palanisamy
    Gokul Bangaru
    Sathyamoorthy Ramakrishnan
    Asokan Kandasami
    Pawan Kumar
    Applied Physics A, 2019, 125
  • [2] TEMPERATURE-DEPENDENT AC CONDUCTIVITY OF THIN PERCOLATION FILMS
    HUNDLEY, MF
    ZETTL, A
    PHYSICAL REVIEW B, 1988, 38 (15): : 10290 - 10296
  • [3] AC conductivity and dielectric properties of Sb2Te3 thin films
    Farid, AM
    Atyia, HE
    Hegab, NA
    VACUUM, 2005, 80 (04) : 284 - 294
  • [4] Temperature-dependent photoconductive properties of Ge-Sb-Te thin films
    Sharma, Ishu
    PHASE TRANSITIONS, 2019, 92 (09) : 851 - 861
  • [5] Effect of annealing on the AC conductivity and the dielectric properties of In2Te3 thin films
    Afifi, MA
    Abd El-Wahabb, E
    Bekheet, AE
    Atyia, HE
    ACTA PHYSICA POLONICA A, 2000, 98 (04) : 401 - 409
  • [6] Temperature-dependent AC conductivities of BiCuOCh (Ch = Te, Se) in the terahertz range
    Shin, Hee Jun
    An, Tae-Ho
    Lim, Young Soo
    Park, Chan
    Song, Jeong-Pil
    Son, Joo-Hiuk
    CURRENT APPLIED PHYSICS, 2016, 16 (10) : 1303 - 1307
  • [7] Broadband Temperature-Dependent Dielectric Properties of Polycrystalline Vanadium Dioxide Thin Films
    Wu, Jiudong
    Emond, Nicolas
    Hendaoui, Ali
    Delprat, Sebastien
    Chaker, Mohamed
    Wu, Ke
    2015 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP), 2015, : 38 - 40
  • [8] Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy
    Hemalatha, K. S.
    Sriprakash, G.
    Prasad, M. V. N. Ambika
    Damle, R.
    Rukmani, K.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (15)
  • [9] TEMPERATURE-DEPENDENT STRUCTURE AND OPTICAL PROPERTIES OF In2Se3 THIN FILMS
    Yuan, Y.
    Li, Y.
    Wang, Z.
    Ren, H.
    Li, J.
    Chen, W.
    CHALCOGENIDE LETTERS, 2020, 17 (05): : 243 - 249
  • [10] Temperature-dependent dielectric properties of ZnO-CuO nanocomposite
    Amin, Talha
    Raza, Adil
    Noor, Hadia
    Raza, Ali
    Haidry, Azhar Ali
    MATERIALS LETTERS, 2025, 391