Initial measures for the stochastic heat equation

被引:16
|
作者
Conus, Daniel [1 ]
Joseph, Mathew [2 ]
Khoshnevisan, Davar [2 ]
Shiu, Shang-Yuan [3 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Acad Sinica, Inst Math, Taipei 10617, Taiwan
基金
美国国家科学基金会;
关键词
The stochastic heat equation; Singular initial data;
D O I
10.1214/12-AIHP505
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a family of nonlinear stochastic heat equations of the form partial derivative(t)u = Lu + sigma(u)(W)over dot, where (W)over dot denotes space time white noise, L the generator of a symmetric Levy process on R, and sigma is Lipschitz continuous and zero at 0. We show that this stochastic PDE has a random-field solution for every finite initial measure u(0). Tight a priori bounds on the moments of the solution are also obtained. In the particular case that L f = c '' for some c> 0, we prove that if up is a finite measure of compact support, then the solution is with probability one a bounded function for all times t > 0.
引用
收藏
页码:136 / 153
页数:18
相关论文
共 50 条
  • [11] INITIAL-BOUNDARY VALUE PROBLEM FOR THE HEAT EQUATION-A STOCHASTIC ALGORITHM
    Deaconu, Madalina
    Herrmann, Samuel
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (03): : 1943 - 1976
  • [12] MOMENTS AND GROWTH INDICES FOR THE NONLINEAR STOCHASTIC HEAT EQUATION WITH ROUGH INITIAL CONDITIONS
    Chen, Le
    Dalang, Robert C.
    ANNALS OF PROBABILITY, 2015, 43 (06): : 3006 - 3051
  • [13] On Initial-Boundary Value Problem of the Stochastic Heat Equation in Lipschitz Cylinders
    Chang, Tongkeun
    Lee, Kijung
    Yang, Minsuk
    JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (04) : 1135 - 1164
  • [14] Transition measures for the stochastic Burgers equation
    Mattingly, Jonathan C.
    Suidan, Toufic M.
    INTEGRABLE SYSTEMS AND RANDOM MATRICES: IN HONOR OF PERCY DEIFT, 2008, 458 : 409 - 418
  • [15] Hölder-continuity for the nonlinear stochastic heat equation with rough initial conditions
    Chen L.
    Dalang R.C.
    Stochastic Partial Differential Equations: Analysis and Computations, 2014, 2 (3) : 316 - 352
  • [16] Carleson measures and the heat equation
    Oleǐnik V.L.
    Journal of Mathematical Sciences, 2000, 101 (3) : 3133 - 3138
  • [17] On the global maximum of the solution to a stochastic heat equation with compact-support initial data
    Foondun, Mohammud
    Khoshnevisan, Davar
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (04): : 895 - 907
  • [18] On the Positivity of the Stochastic Heat Equation
    Fred Espen Benth
    Potential Analysis, 1997, 6 : 127 - 148
  • [19] ON THE VALLEYS OF THE STOCHASTIC HEAT EQUATION
    Khoshnevisan, Davar
    Kim, Kunwoo
    Mueller, Carl
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (1B): : 1177 - 1198
  • [20] A Skew Stochastic Heat Equation
    Bounebache, Said Karim
    Zambotti, Lorenzo
    JOURNAL OF THEORETICAL PROBABILITY, 2014, 27 (01) : 168 - 201