POLYNOMIAL TIME QUANTUM ALGORITHMS FOR CERTAIN BIVARIATE HIDDEN POLYNOMIAL PROBLEMS

被引:0
|
作者
Decker, Thomas [1 ]
Hoyer, Peter [2 ,3 ]
Ivanyos, Gabor [4 ]
Santha, Miklos [1 ,5 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[2] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada
[3] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[4] Hungarian Acad Sci, Inst Comp Sci & Control, H-1111 Budapest, Hungary
[5] Univ Paris Diderot, CNRS, LIAFA, F-75013 Paris, France
基金
新加坡国家研究基金会; 匈牙利科学研究基金会; 加拿大自然科学与工程研究理事会;
关键词
Quantum algorithm; Hidden Polynomial Problem; SUBGROUP PROBLEM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a new method for solving the hidden polynomial graph problem (HPGP) which is a special case of the hidden polynomial problem (HPP). The new approach yields an efficient quantum algorithm for the bivariate HPGP even when the input consists of several level set superpositions, a more difficult version of the problem than the one where the input is given by an oracle. For constant degree, the algorithm is polylogarithmic in the size of the base field. We also apply the results to give an efficient quantum algorithm for the oracle version of the HPP for an interesting family of bivariate hidden functions. This family includes diagonal quadratic forms and elliptic curves.
引用
收藏
页码:790 / 806
页数:17
相关论文
共 50 条
  • [21] Polynomial-time algorithms for multimarginal optimal transport problems with structure
    Jason M. Altschuler
    Enric Boix-Adserà
    Mathematical Programming, 2023, 199 : 1107 - 1178
  • [22] Polynomial Time Algorithms for 2-Edge-Connectivity Augmentation Problems
    Anna Galluccio
    Guido Proietti
    Algorithmica, 2003, 36 : 361 - 374
  • [23] Polynomial time algorithms for 2-edge-connectivity augmentation problems
    Galluccio, A
    Proietti, G
    ALGORITHMICA, 2003, 36 (04) : 361 - 374
  • [24] Polynomial Inversion Algorithms in Constant Time for Post-Quantum Cryptography
    Dutta, Abhraneel
    Karagoz, M. Rah
    Persichetti, Edoardo
    Sanal, Pakize
    PROGRESS IN CRYPTOLOGY-INDOCRYPT 2024, PT II, 2025, 15496 : 237 - 256
  • [25] Deterministic polynomial-time quantum algorithms for Simon’s problem
    Takashi Mihara
    Shao Chin Sung
    computational complexity, 2003, 12 : 162 - 175
  • [26] Deterministic polynomial-time quantum algorithms for Simon's problem
    Mihara, T
    Sung, SC
    COMPUTATIONAL COMPLEXITY, 2003, 12 (3-4) : 162 - 175
  • [27] PRACTICAL POLYNOMIAL-TIME ALGORITHMS FOR LINEAR COMPLEMENTARITY-PROBLEMS
    MIZUNO, S
    YOSHISE, A
    KIKUCHI, T
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1989, 32 (01) : 75 - 92
  • [28] General polynomial time decomposition algorithms
    List, N
    Simon, HU
    LEARNING THEORY, PROCEEDINGS, 2005, 3559 : 308 - 322
  • [29] General polynomial time decomposition algorithms
    List, Nikolas
    Simon, Hans Ulrich
    JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 303 - 321
  • [30] General polynomial time decomposition algorithms
    Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany
    J. Mach. Learn. Res., 2007, (303-321): : 303 - 321