New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations

被引:160
|
作者
Ravichandran, C. [1 ]
Logeswari, K. [1 ]
Jarad, Fahd [2 ]
机构
[1] Kongunadu Arts & Sci Coll Autonomous, PG & Res Dept Math, Coimbatore 641029, Tamil Nadu, India
[2] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
关键词
Fractional differential equation; Atangana-Baleanu derivative; Fixed point techniques; MITTAG-LEFFLER KERNEL; MODEL;
D O I
10.1016/j.chaos.2019.05.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider integro-differential equations involving the recently explored Atangana-Baleanu fractional derivatives which contain the generalized Mittag-Leffler functions in their kernels. Utilizing fixed point techniques, we examine the existence and uniqueness of solutions to such equations in Banach spaces. Moreover, we consider an example and investigate numerical outcomes for various values of the fractional order. Then, we consider the stability of the tackled integro-differential equation in the frame of Ulam. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:194 / 200
页数:7
相关论文
共 50 条
  • [41] Comparative Analysis of Advection-Dispersion Equations with Atangana-Baleanu Fractional Derivative
    Alshehry, Azzh Saad
    Yasmin, Humaira
    Ghani, Fazal
    Shah, Rasool
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2023, 15 (04):
  • [42] A Fractional SAIDR Model in the Frame of Atangana-Baleanu Derivative
    Ucar, Esmehan
    Ucar, Sumeyra
    Evirgen, Firat
    Ozdemir, Necati
    FRACTAL AND FRACTIONAL, 2021, 5 (02)
  • [43] Freelance Model with Atangana-Baleanu Caputo Fractional Derivative
    Khan, Fareeha Sami
    Khalid, M.
    Al-moneef, Areej A.
    Ali, Ali Hasan
    Bazighifan, Omar
    SYMMETRY-BASEL, 2022, 14 (11):
  • [44] Optimal control problems with Atangana-Baleanu fractional derivative
    Tajadodi, Haleh
    Khan, Aziz
    Francisco Gomez-Aguilar, Jose
    Khan, Hasib
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (01): : 96 - 109
  • [45] A comparative study of three numerical schemes for solving Atangana-Baleanu fractional integro-differential equation defined in Caputo sense
    Singh, Deeksha
    Sultana, Farheen
    Pandey, Rajesh K.
    Atangana, Abdon
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 1) : 149 - 168
  • [46] A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative
    Khan, Muhammad Altaf
    Ullah, Saif
    Farooq, Muhammad
    CHAOS SOLITONS & FRACTALS, 2018, 116 : 227 - 238
  • [47] Inverse problem for the Atangana-Baleanu fractional differential equation
    Ruhil, Santosh
    Malik, Muslim
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (05): : 763 - 779
  • [48] Fuzzy Differential Subordination of the Atangana-Baleanu Fractional Integral
    Lupas, Alina Alb
    Catas, Adriana
    SYMMETRY-BASEL, 2021, 13 (10):
  • [49] Comparison of Caputo and Atangana-Baleanu fractional derivatives for the pseudohyperbolic telegraph differential equations
    Modanli, Mahmut
    PRAMANA-JOURNAL OF PHYSICS, 2021, 96 (01):
  • [50] Optimally analyzed fractional Coronavirus model with Atangana-Baleanu derivative
    Butt, A. I. K.
    Ahmad, W.
    Rafiq, M.
    Ahmad, N.
    Imran, M.
    RESULTS IN PHYSICS, 2023, 53