On collisionless ion and electron populations in the magnetic nozzle experiment (MNX)

被引:30
|
作者
Cohen, Samuel A.
Sun, Xuan
Ferraro, Nathaniel M.
Scime, Earl E.
Miah, Mahmood
Stange, Sy
Siefert, Nicholas S.
Boivin, Robert F.
机构
[1] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA
[2] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
[3] Univ Michigan, Univ Res Program Robot, Ann Arbor, MI 48109 USA
[4] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA
[5] Auburn Univ, Dept Phys, Auburn, AL 36849 USA
关键词
double layer; helicon; laser-induced-fluorescence (LIF); magnetic nozzle;
D O I
10.1109/TPS.2006.875846
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Magnetic Nozzle Experiment (MNX) is a linear magnetized helicon-heated plasma device, with applications to advanced spacecraft-propulsion methods and solar-corona physics. This paper reviews ion and electron energy distributions measured in MNX with laser-induced fluorescence (LIF) and probes, respectively. Ions, cold and highly collisional in the main MNX region, are accelerated along a uniform magnetic field to sonic then supersonic speeds as they exit the main region through either mechanical or magnetic apertures. A sharp decrease in density downstream of the aperture(s) helps effect a transition from collisional to collisionless plasma. The electrons in the downstream region have an average energy somewhat higher than that in the main region. From LIF ion-velocity measurements, we find upstream of the aperture a presheath of strength Delta phi(ps) = T-mr(e), where T-mr(e) is the electron temperature in the main region, and length similar to 3 cm, comparable to the ion-neutral mean-free-path; immediately downstream of the aperture is an electrostatic double layer of strength Delta phi(DL) = 3-10 T-mr(e) and length 0.3-0.6 cm, 30-600 lambda(D). The existence of a small, ca. 0.1%, superthermal electron population with average energy similar to 10 T-mr(e) is inferred from considerations of spectroscopic line ratios, floating potentials, and Langmuir probe data. The superthermal electrons are suggested to be the source for the large Delta phi(DL).
引用
收藏
页码:792 / 803
页数:12
相关论文
共 50 条
  • [41] Spontaneous Onset of Collisionless Magnetic Reconnection on an Electron Scale
    Liu, Dongkuan
    Lu, San
    Lu, Quanming
    Ding, Weixing
    Wang, Shui
    ASTROPHYSICAL JOURNAL LETTERS, 2020, 890 (02)
  • [42] Electron dynamics in collisionless magnetic reconnection with a PIC simulation
    Guo Jun
    CHINESE SCIENCE BULLETIN, 2009, 54 (03): : 456 - 460
  • [43] The role of electron dissipation on the rate of collisionless magnetic reconnection
    Shay, M.A.
    Drake, J.F.
    Geophysical Research Letters, 1998, 25 (20): : 3759 - 3762
  • [44] Collisionless magnetic reconnection: Electron processes and transport modeling
    Hesse, M
    Birn, J
    Kuznetsova, M
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A3) : 3721 - 3735
  • [45] On the role of a nonscalar electron pressure in the collisionless magnetic reconnection
    Hosseinpour, M.
    Vekstein, G.
    PHYSICS OF PLASMAS, 2009, 16 (11) : 114505
  • [46] Stacked Electron Diffusion Regions and Electron Kelvin-Helmholtz Vortices within the Ion Diffusion Region of Collisionless Magnetic Reconnection
    Zhong, Z. H.
    Zhou, M.
    Liu, Yi-Hsin
    Deng, X. H.
    Tang, R. X.
    Graham, D. B.
    Song, L. J.
    Man, H. Y.
    Pang, Y.
    Khotyaintsev, Yu, V
    ASTROPHYSICAL JOURNAL LETTERS, 2022, 926 (02)
  • [47] Comparative study of electron temperature and ion energy in two different magnetic nozzle thruster designs
    Schäfer, Clara E.
    Schmidt, Jens
    Plettenberg, Felix
    Chan, Yung-An
    Grabe, Martin
    Schramm, Jan Martinez
    Holste, Kristof
    Klar, Peter J.
    Journal of Electric Propulsion, 2024, 3 (01):
  • [48] The fully-kinetic investigations on the ion acceleration mechanisms in an electron-driven magnetic nozzle
    Chen, Zhiyuan
    Wang, Yibai
    Ren, Junxue
    Tang, Haibin
    Wu, Peng
    Li, Min
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2022, 31 (05):
  • [49] Ambipolar ion acceleration in an expanding magnetic nozzle
    Longmier, Benjamin W.
    Bering, Edgar A., III
    Carter, Mark D.
    Cassady, Leonard D.
    Chancery, William J.
    Diaz, Franklin R. Chang
    Glover, Tim W.
    Hershkowitz, Noah
    Ilin, Andrew V.
    McCaskill, Greg E.
    Olsen, Chris S.
    Squire, Jared P.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2011, 20 (01):
  • [50] Adiabatic Expansion of Electron Gas in a Magnetic Nozzle
    Takahashi, Kazunori
    Charles, Christine
    Boswell, Rod
    Ando, Akira
    PHYSICAL REVIEW LETTERS, 2018, 120 (04)