Accounting for input model and parameter uncertainty in simulation

被引:21
|
作者
Zouaoui, F [1 ]
Wilson, JR [1 ]
机构
[1] Sabre Inc, Res Grp, Southlake, TX 76092 USA
关键词
D O I
10.1109/WSC.2001.977287
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Taking into account input-model, input-parameter, and stochastic uncertainties inherent in many simulations, our Bayesian approach to input modeling yields valid point and confidence-interval estimators for a selected posterior mean response. Exploiting prior information to specify the prior plausibility of each candidate input model and to construct prior distributions on the model's parameters, we combine this information with the likelihood function of sample data to compute posterior model probabilities and parameter distributions. Our Bayesian Simulation Replication Algorithm involves: (a) estimating parameter uncertainty by sampling from the posterior parameter distributions on selected runs; (b) estimating stochastic uncertainty by multiple independent replications of those runs; and (c) estimating model uncertainty by weighting the results of (a) and (b) using the corresponding posterior model probabilities. We allocate runs in (a) and (b) to minimize final estimator variance subject to a computing-budget constraint. An experimental performance evaluation demonstrates the advantages of this approach.
引用
收藏
页码:290 / 299
页数:10
相关论文
共 50 条
  • [21] Accounting for regime and parameter uncertainty in regime-switching models
    Hartman, Brian M.
    Heaton, Matthew J.
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2011, 49 (03): : 429 - 437
  • [22] Estimation and Impact Assessment of Input and Parameter Uncertainty in Predicting Groundwater Flow With a Fully Distributed Model
    Mustafa, Syed Md. Touhidul
    Nossent, Jiri
    Ghysels, Gert
    Huysmans, Marijke
    [J]. WATER RESOURCES RESEARCH, 2018, 54 (09) : 6585 - 6608
  • [23] THE EMPIRICAL LIKELIHOOD APPROACH TO SIMULATION INPUT UNCERTAINTY
    Lam, Henry
    Qian, Huajie
    [J]. 2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 791 - 802
  • [24] ROBUST SIMULATION BASED OPTIMIZATION WITH INPUT UNCERTAINTY
    Lakshmanan, Sathishkumar
    Venkateswaran, Jayendran
    [J]. 2017 WINTER SIMULATION CONFERENCE (WSC), 2017, : 2257 - 2267
  • [25] Stochastic simulation under input uncertainty: A Review
    Corlu, Canan G.
    Akcay, Alp
    Xie, Wei
    [J]. OPERATIONS RESEARCH PERSPECTIVES, 2020, 7
  • [26] SIMULATION OPTIMIZATION WHEN FACING INPUT UNCERTAINTY
    Zhou, Enlu
    Xie, Wei
    [J]. 2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 3714 - 3724
  • [27] Accounting for parameter uncertainty in reservoir uncertainty assessment: The conditional finite-domain approach
    Babak O.
    Deutsch C.V.
    [J]. Natural Resources Research, 2009, 18 (1) : 7 - 17
  • [28] Orthogonal Bootstrap: Efficient Simulation of Input Uncertainty
    Liu, Kaizhao
    Blanchet, Jose
    Ying, Lexing
    Lu, Yiping
    [J]. Proceedings of Machine Learning Research, 2024, 235 : 30669 - 30701
  • [29] An interval-based approach to model input uncertainty in M/M/1 simulation
    Batarseh, Ola G.
    Wang, Yan
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2018, 95 : 46 - 61
  • [30] DISTRIBUTIONALLY ROBUST OPTIMIZATION FOR INPUT MODEL UNCERTAINTY IN SIMULATION-BASED DECISION MAKING
    Ghosh, Soumyadip
    Squillante, Mark S.
    [J]. 2022 WINTER SIMULATION CONFERENCE (WSC), 2022, : 2294 - 2305