We study the arithmetic of seminormal v-noetherian weakly Krull monoids with nontrivial conductor which have finite class group and prime divisors in all classes. These monoids include seminormal orders in holomorphy rings in global fields. The crucial property of seminormality allows us to give precise arithmetical results analogous to the well-known results for Krull monoids having finite class group and prime divisors in each class. This allows us to show, for example, that unions of sets of lengths are intervals and to provide a characterization of half-factoriality. (C) 2015 Elsevier Inc. All rights reserved.