On the theory of translationally invariant magnetohydrodynamic equilibria with anisotropic pressure and magnetic shear

被引:5
|
作者
Hodgson, J. D. B. [1 ]
Neukirch, T. [1 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
来源
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS | 2015年 / 109卷 / 05期
基金
英国科学技术设施理事会;
关键词
Magnetohydrodynamics; Magnetohydrodynamic equilibria; Anisotropic pressure; Magnetic shear; GRAD-SHAFRANOV EQUATION; PLASMA EQUILIBRIA; ONSET CONDITIONS; ASPECT RATIO; FIELD; STABILITY; CURRENTS; REPRESENTATIONS; BIFURCATION; INSTABILITY;
D O I
10.1080/03091929.2015.1081188
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an improved formalism for translationally invariant magnetohydrodynamic equilibria with anisotropic pressure and currents with a field aligned component. The derivation of a Grad-Shafranov type equation is given along with a constraint which links the shear field to the parallel pressure. The difficulties of the formalism are discussed and various methods of circumventing these difficulties are given. A simple example is then used to highlight the methods and difficulties involved.
引用
收藏
页码:524 / 537
页数:14
相关论文
共 50 条
  • [21] Statistical theory of anisotropic magnetohydrodynamic turbulence: An approach to strong shear Alfven turbulence by direct-interaction approximation
    Nakayama, K
    ASTROPHYSICAL JOURNAL, 1999, 523 (01): : 315 - 327
  • [22] Three-dimensional magnetohydrodynamic equilibria with continuous magnetic fields
    Hudson, S. R.
    Kraus, B. F.
    JOURNAL OF PLASMA PHYSICS, 2017, 83 (04)
  • [23] Overstability of acoustic waves in strongly magnetized anisotropic magnetohydrodynamic shear flows
    Uchava, E. S.
    Shergelashvili, B. M.
    Tevzadze, A. G.
    Poedts, S.
    PHYSICS OF PLASMAS, 2014, 21 (08)
  • [24] Analytical calculation of Boozer magnetic coordinates for axisymmetric magnetohydrodynamic equilibria
    Alladio, F
    Micozzi, P
    PHYSICS OF PLASMAS, 1996, 3 (01) : 72 - 88
  • [25] Predicting nonresonant pressure-driven MHD modes in equilibria with low magnetic shear
    Wright, A. M.
    Ferraro, N. M.
    Hudson, S. R.
    Dewar, R. L.
    Hole, M. J.
    PHYSICS OF PLASMAS, 2021, 28 (01)
  • [26] STATISTICAL-THEORY FOR MAGNETOHYDRODYNAMIC TURBULENT SHEAR FLOWS
    YOSHIZAWA, A
    PHYSICS OF FLUIDS, 1985, 28 (11) : 3313 - 3320
  • [27] THEORY OF PRESSURE-INDUCED ISLANDS AND SELF-HEALING IN 3-DIMENSIONAL TOROIDAL MAGNETOHYDRODYNAMIC EQUILIBRIA
    BHATTACHARJEE, A
    HAYASHI, T
    HEGNA, CC
    NAKAJIMA, N
    SATO, T
    PHYSICS OF PLASMAS, 1995, 2 (03) : 883 - 888
  • [28] Anisotropic magnetohydrostatic equilibria with arbitrary magnetic fields
    Lortz, D
    Spies, GO
    PHYSICS OF PLASMAS, 2003, 10 (02) : 553 - 553
  • [29] Magnetohydrodynamic stability study of reverse shear equilibria in the Tokamak Fusion Test Reactor
    Phillips, MW
    Zarnstorff, MC
    Manickam, J
    Levinton, FM
    Hughes, MH
    PHYSICS OF PLASMAS, 1996, 3 (05) : 1673 - 1681
  • [30] Adiabatically reduced magnetohydrodynamic equations for a cylindrical plasma with an anisotropic pressure
    Nebogatov, V. A.
    Pastukhov, V. P.
    PLASMA PHYSICS REPORTS, 2013, 39 (06) : 467 - 478