Complete permutation polynomials from exceptional polynomials

被引:20
|
作者
Bartoli, D. [1 ]
Giulietti, M. [1 ]
Quoos, L. [2 ]
Zini, G. [3 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, Via Vanvitelli 1, I-06123 Perugia, Italy
[2] Univ Fed Rio de Janeiro, Inst Matemat, BR-21941909 Rio De Janeiro, Brazil
[3] Univ Florence, Dipartimento Matemat & Informat Ulisse Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Permutation polynomials; Complete permutation polynomials; Exceptional polynomials; Bent-negabent boolean functions; FINITE-FIELDS; DICKSON POLYNOMIALS;
D O I
10.1016/j.jnt.2016.12.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify complete permutation monomials of degree q(n)-1/q-1+1 over the finite field with q(n) elements in odd characteristic, for n + 1 a prime and (n + 1)(4) < q. As a corollary, a conjecture by Wu, Li, Helleseth, and Zhang is proven in odd characteristic. When n + 1 is a power of the characteristic we provide some new examples. Indecomposable exceptional polynomials of degree 8 and 9 are also classified. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 66
页数:21
相关论文
共 50 条
  • [1] Permutation and complete permutation polynomials
    Bassalygo, L. A.
    Zinoviev, V. A.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 : 198 - 211
  • [2] Constructions of complete permutation polynomials
    Xu, Xiaofang
    Li, Chunlei
    Zeng, Xiangyong
    Helleseth, Tor
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (12) : 2869 - 2892
  • [3] Constructions of complete permutation polynomials
    Xiaofang Xu
    Chunlei Li
    Xiangyong Zeng
    Tor Helleseth
    [J]. Designs, Codes and Cryptography, 2018, 86 : 2869 - 2892
  • [4] On monomial complete permutation polynomials
    Bartoli, Daniele
    Giulietti, Massimo
    Zini, Giovanni
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2016, 41 : 132 - 158
  • [5] Further results on permutation polynomials and complete permutation polynomials over finite fields
    Liu, Qian
    Xie, Jianrui
    Liu, Ximeng
    Zou, Jian
    [J]. AIMS MATHEMATICS, 2021, 6 (12): : 13503 - 13514
  • [6] Constructing permutation polynomials from permutation polynomials of subfields
    Reis, Lucas
    Wang, Qiang
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2024, 96
  • [7] New classes of complete permutation polynomials
    Li, Lisha
    Li, Chaoyun
    Li, Chunlei
    Zeng, Xiangyong
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 : 177 - 201
  • [8] Several classes of complete permutation polynomials
    Tu, Ziran
    Zeng, Xiangyong
    Hu, Lei
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2014, 25 : 182 - 193
  • [9] Permutation polynomials and group permutation polynomials
    Park, YH
    Lee, JB
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 63 (01) : 67 - 74
  • [10] SUMS OF POLYNOMIALS AS PERMUTATION POLYNOMIALS
    NIEDERRE.HG
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 360 - &