On monomial complete permutation polynomials

被引:20
|
作者
Bartoli, Daniele [1 ]
Giulietti, Massimo [1 ]
Zini, Giovanni [2 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, Via Vanvitelli 1, I-06123 Perugia, Italy
[2] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Permutation polynomials; Complete permutation polynomials; Bent-negabent boolean functions; FINITE-FIELDS;
D O I
10.1016/j.ffa.2016.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate monomials ax(d) over the finite field with q elements F-q, in the case where the degree d is equal to q-1/q'-1 + 1 with q = (q')(n) for some n. For n = 6 we explicitly list all a's for which ax(d) is a complete permutation polynomial (CPP) over F-q. Some previous characterization results by Wu et al. for n = 4 are also made more explicit by providing a complete list of a's such that ax(d) is a CPP. For odd n, we show that if q is large enough with respect to n then ax(d) cannot be a CPP over F-q, unless q is even, n equivalent to 3 (mod 4), and the trace Tr-Fq/Fq' (a(-1)) is equal to 0. (C) 2016 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:132 / 158
页数:27
相关论文
共 50 条
  • [1] Permutation and complete permutation polynomials
    Bassalygo, L. A.
    Zinoviev, V. A.
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 33 : 198 - 211
  • [2] Some classes of monomial complete permutation polynomials over finite fields of characteristic two
    Wu, Gaofei
    Li, Nian
    Helleseth, Tor
    Zhang, Yuqing
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 28 : 148 - 165
  • [3] Monomial functions with linear structure and permutation polynomials
    Charpin, Pascale
    Kyureghyan, Gohar M.
    FINITE FIELDS: THEORY AND APPLICATIONS, 2010, 518 : 99 - +
  • [4] Constructions of complete permutation polynomials
    Xu, Xiaofang
    Li, Chunlei
    Zeng, Xiangyong
    Helleseth, Tor
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (12) : 2869 - 2892
  • [5] Constructions of complete permutation polynomials
    Xiaofang Xu
    Chunlei Li
    Xiangyong Zeng
    Tor Helleseth
    Designs, Codes and Cryptography, 2018, 86 : 2869 - 2892
  • [6] Complete permutation polynomials from exceptional polynomials
    Bartoli, D.
    Giulietti, M.
    Quoos, L.
    Zini, G.
    JOURNAL OF NUMBER THEORY, 2017, 176 : 46 - 66
  • [7] Further results on permutation polynomials and complete permutation polynomials over finite fields
    Liu, Qian
    Xie, Jianrui
    Liu, Ximeng
    Zou, Jian
    AIMS MATHEMATICS, 2021, 6 (12): : 13503 - 13514
  • [8] New classes of complete permutation polynomials
    Li, Lisha
    Li, Chaoyun
    Li, Chunlei
    Zeng, Xiangyong
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 : 177 - 201
  • [9] Several classes of complete permutation polynomials
    Tu, Ziran
    Zeng, Xiangyong
    Hu, Lei
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 25 : 182 - 193
  • [10] A general construction of regular complete permutation polynomials
    Lu, Wei
    Wu, Xia
    Wang, Yufei
    Cao, Xiwang
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (08) : 2627 - 2647