AN APPLICATION OF FACTORABLE SURFACES IN EUCLIDEAN 4-SPACE E4

被引:0
|
作者
Buyukkutuk, S. [1 ]
Ozturk, G. [2 ]
机构
[1] Kocaeli Univ, Art & Sci Fac, Dept Math, Kocaeli, Turkey
[2] Izmir Democracy Univ, Art & Sci Fac, Dept Math, Izmir, Turkey
关键词
Factorable surface; Euclidean; 4-space; monge patch; minimal surface;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we consider the factorable surfaces in Euclidean 4-space E-4. We characterize such surfaces in terms of their Gaussian curvature, Gaussian torsion and mean curvature. Further, we classify flat, semiumbilical and minimal factorable surfaces in E-4.
引用
收藏
页码:121 / 127
页数:7
相关论文
共 50 条
  • [31] Monge Hypersurfaces in Euclidean 4-Space with Density
    Altin, Mustafa
    Kazan, Ahmet
    Karadag, H. Bayram
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2020, 23 (01): : 207 - 214
  • [32] Rotational Hypersurfaces in Euclidean 4-Space with Density
    Altin, Mustafa
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2022, 25 (01): : 107 - 114
  • [33] Harmonic surfaces in affine 4-space
    Li, JF
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (06) : 763 - 771
  • [34] General rotational surfaces in Euclidean space E4 with pointwise 1-type Gauss map
    Dursun, Ugur
    Turgay, Nurretin Cenk
    MATHEMATICAL COMMUNICATIONS, 2012, 17 (01) : 71 - 81
  • [35] Bordism of unoriented surfaces in 4-space
    Carter, JS
    Kamada, S
    Saito, M
    Satoh, S
    MICHIGAN MATHEMATICAL JOURNAL, 2002, 50 (03) : 575 - 591
  • [36] Singularities of the projections of surfaces in 4-space
    Carrara, V
    Carter, JS
    Saito, M
    PACIFIC JOURNAL OF MATHEMATICS, 2001, 199 (01) : 21 - 40
  • [37] Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvatures
    Bang-Yen Chen
    Annals of Global Analysis and Geometry, 2010, 38 : 145 - 160
  • [38] Hypersurfaces With a Common Geodesic Curve in 4D Euclidean space E4
    Nazra, Sahar H.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [39] Thomsen surfaces in affine 4-space
    Vrancken, L
    MONATSHEFTE FUR MATHEMATIK, 1996, 122 (03): : 251 - 264
  • [40] NOTE ON ORIENTABLE SURFACES IN 4-SPACE
    TAKASE, R
    PROCEEDINGS OF THE JAPAN ACADEMY, 1963, 39 (07): : 424 - &