Automatic zipper tape defect detection using two-stage multi-scale convolutional networks

被引:16
|
作者
Fang, Houzhang [1 ]
Xia, Mingjiang [1 ]
Liu, Hehui [2 ]
Chang, Yi [3 ]
Wang, Liming [1 ]
Liu, Xiyang [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Software Engn Inst, Xian 710071, Peoples R China
[2] Nanjing Cognit Internet Things Res Inst, Nanjing 210001, Peoples R China
[3] Artificial Intelligence Res Ctr, Pengcheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Automatic defect detection; Zipper tape inspection; Fully convolutional neural network; Feature fusion; Multi-scale detection;
D O I
10.1016/j.neucom.2020.09.046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Defects inevitably occur during the manufacturing process of the zipper, significantly affecting its value. Zipper inspection is of significant importance in ensuring the quality of the zipper products. Traditional zipper inspection requires skilled inspectors and is labor-intensive, inefficient, and inaccurate. Currently, automated zipper defects inspection with high precision and high efficiency is still very challenging. In this paper, we propose a novel zipper tape defect detection framework based on fully convolutional networks in a two-stage coarse-to-fine cascade manner. For our special application, the zipper tape defects have multi-scale characteristics. Most of the existing deep learning methods have great advantages in detecting the large-scale defects with prominent features, but are prone to fail in detecting the smallscale ones due to their less remarkable features as well as their general location in a large background area. Thus, we propose to detect first the large local context regions containing the small-scale defects using a multi-scale detection architecture with high efficiency, which integrates a new detection branch by fusing the features in the shallow layer into the high-level layer to boost the detection performance of the context regions. Then we finely detect the small-scale defects from the local context regions detected in the first stage, which can be regarded as large-scale objects that are more easily detected. Extensive comparative experiments demonstrate that the proposed method offers a high detection accuracy while still having high detection efficiency compared with the state-of-the-art methods, coupled with good robustness in some complex cases. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 50
页数:17
相关论文
共 50 条
  • [31] Multi-Scale Prediction For Fire Detection Using Convolutional Neural Network
    Jeon, Myeongho
    Choi, Han-Soo
    Lee, Junho
    Kang, Myungjoo
    FIRE TECHNOLOGY, 2021, 57 (05) : 2533 - 2551
  • [32] Multi-Scale Prediction For Fire Detection Using Convolutional Neural Network
    Myeongho Jeon
    Han-Soo Choi
    Junho Lee
    Myungjoo Kang
    Fire Technology, 2021, 57 : 2533 - 2551
  • [33] An improved multi-scale face detection using convolutional neural network
    Mliki, Hazar
    Dammak, Sahar
    Fendri, Emna
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (07) : 1345 - 1353
  • [34] An improved multi-scale face detection using convolutional neural network
    Mliki, Hazar
    Dammak, Sahar
    Fendri, Emna
    Dammak, Sahar (sahardammak@fsegs.u-sfax.tn), 1600, Springer Science and Business Media Deutschland GmbH (14): : 1345 - 1353
  • [35] An improved multi-scale face detection using convolutional neural network
    Hazar Mliki
    Sahar Dammak
    Emna Fendri
    Signal, Image and Video Processing, 2020, 14 : 1345 - 1353
  • [36] Automatic visual inspection of woven textiles using a two-stage defect detector
    Campbell, JG
    Murtagh, F
    OPTICAL ENGINEERING, 1998, 37 (09) : 2536 - 2542
  • [37] Deep Multi-scale Feature Fusion Convolutional Neural Network for Automatic Epilepsy Detection Using EEG Signals
    Qin, Hongshuai
    Deng, Bin
    Wang, Jiang
    Yi, Guosheng
    Wang, Ruofan
    Zhang, Zhen
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7061 - 7066
  • [38] Semantic image segmentation using fully convolutional neural networks with multi-scale images and multi-scale dilated convolutions
    Duc My Vo
    Lee, Sang-Woong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (14) : 18689 - 18707
  • [39] Semantic image segmentation using fully convolutional neural networks with multi-scale images and multi-scale dilated convolutions
    Duc My Vo
    Sang-Woong Lee
    Multimedia Tools and Applications, 2018, 77 : 18689 - 18707
  • [40] Multi-stream multi-scale deep convolutional networks for Alzheimer's disease detection using MR images
    Ge, Chenjie
    Qu, Qixun
    Gu, Irene Yu-Hua
    Jakola, Asgeir Store
    NEUROCOMPUTING, 2019, 350 : 60 - 69