Some Coefficient Inequalities Related to the Hankel Determinant for a Certain Class of Close-to-convex Functions

被引:2
|
作者
Sun, Yong [1 ]
Wang, Zhi-Gang [2 ]
机构
[1] Hunan Inst Engn, Sch Sci, Xiangtan 411104, Hunan, Peoples R China
[2] Hunan First Normal Univ, Math & Comp Sci, Changsha 410205, Hunan, Peoples R China
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2019年 / 59卷 / 03期
关键词
coefficient inequality; Hankel determinant; Zalcman's conjecture; close-to-convex functions; FEKETE-SZEGO PROBLEM; ZALCMAN CONJECTURE; STARLIKE; INVERSE; BOUNDS;
D O I
10.5666/KMJ.2019.59.3.481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we investigate the upper bounds on third order Hankel determinants for certain class of close-to-convex functions in the unit disk. Furthermore, we obtain estimates of the Zalcman coefficient functional for this class.
引用
收藏
页码:481 / 491
页数:11
相关论文
共 50 条
  • [1] Coefficient Estimates of Toeplitz Determinant for a Certain Class of Close-to-Convex Functions
    Soh, Shaharuddin Cik
    Mohamad, Daud
    Dzubaidi, Huzaifah
    [J]. MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2021, 17 (05): : 670 - 677
  • [2] Second Hankel determinant for close-to-convex functions
    Raducanu, Dorina
    Zaprawa, Pawel
    [J]. COMPTES RENDUS MATHEMATIQUE, 2017, 355 (10) : 1063 - 1071
  • [3] Coefficient Bounds for a Certain Class of Close-to-convex Functions
    Yahya, Abdullah
    Soh, Shaharuddin Cik
    [J]. PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [4] Coefficient, distortion and growth inequalities for certain close-to-convex functions
    Cho, Nak Eun
    Kwon, Oh Sang
    Ravichandran, V.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [5] Coefficient, distortion and growth inequalities for certain close-to-convex functions
    Nak Eun Cho
    Oh Sang Kwon
    V Ravichandran
    [J]. Journal of Inequalities and Applications, 2011
  • [6] Bounds on third Hankel determinant for close-to-convex functions
    Prajapat, J. K.
    Bansal, Deepak
    Singh, Alok
    Mishra, Ambuj K.
    [J]. ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2015, 7 (02) : 210 - 219
  • [7] ON THE THIRD HANKEL DETERMINANT FOR A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    Sahoo, Pravati
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 12 (01): : 59 - 73
  • [8] A REFINEMENT OF THE THIRD HANKEL DETERMINANT FOR CLOSE-TO-CONVEX FUNCTIONS
    Parida, Laxmipriya
    Bulboaca, Teodor
    Sahoo, Ashok Kumar
    [J]. HONAM MATHEMATICAL JOURNAL, 2024, 46 (03): : 515 - 521
  • [9] COEFFICIENT ESTIMATES FOR SOME CERTAIN SUBCLASSES OF CLOSE-TO-CONVEX FUNCTIONS
    Yavuz, Tugba
    [J]. MATEMATICHE, 2016, 71 (01): : 127 - 134
  • [10] The second Hankel determinant for strongly convex and Ozaki close-to-convex functions
    Sim, Young Jae
    Lecko, Adam
    Thomas, Derek K.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (06) : 2515 - 2533